Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 2003 Mar 15; 370(Pt 3): 1011–1017.
PMCID: PMC1223232
PMID: 12479793

Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation.

Abstract

Tumour necrosis factor alpha (TNF-alpha) binds to its receptor (TNFR1) and activates both death- and inflammation/survival-related signalling pathways. The inflammation and survival-related signalling cascade results in the activation of the transcription factor, nuclear factor kappa B (NF-kappa B) and requires recruitment of receptor-interacting protein (RIP) to TNFR1. The indispensable role of RIP in TNF-induced NF-kappa B activation has been demonstrated in RIP(-/-) mice and in cell lines derived from such mice. In the present study, we show that the TNF-alpha-induced accumulation of hypoxia-inducible factor 1 alpha (HIF-1 alpha) protein in normoxic cells is RIP-dependent. Exposing fibroblasts derived from RIP(-/-) mice to either cobalt or PMA resulted in an equivalent HIF-1 alpha induction to that seen in RIP(+/+) fibroblasts. In contrast, RIP(-/-) cells were unable to induce HIF-1 alpha in response to TNF-alpha. Further, transient transfection of NIH 3T3 cells with an NF-kappa B super-repressor plasmid (an inhibitor of NF-kappa B activation) also prevented HIF-1 alpha induction by TNF-alpha. Surprisingly, although HIF-1 alpha mRNA levels remained unchanged after induction by TNF, induction of HIF-1 alpha protein by the cytokine was completely blocked by pretreatment with the transcription inhibitors actinomycin D and 5,6-dichlorobenzimidazole riboside. Finally, TNF failed to induce both HIF-1 alpha, made resistant to von Hippel-Lindau (VHL), and wild-type HIF-1 alpha transfected into VHL(-/-) cells. These results indicate that HIF-1 alpha induction by TNF-alpha in normoxic cells is mediated by protein stabilization but is nonetheless uniquely dependent on NF-kappa B-driven transcription. Thus the results describe a novel mechanism of HIF-1 alpha up-regulation and they identify HIF-1 alpha as a unique component of the NF-kappa B-mediated inflammatory/survival response.

Full Text

The Full Text of this article is available as a PDF (238K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. [PMC free article] [PubMed] [Google Scholar]
  • Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun. 1996 Aug 14;225(2):485–488. [PubMed] [Google Scholar]
  • Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997 Sep 5;272(36):22642–22647. [PubMed] [Google Scholar]
  • Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987–7992. [PMC free article] [PubMed] [Google Scholar]
  • Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8104–8109. [PMC free article] [PubMed] [Google Scholar]
  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999 May 20;399(6733):271–275. [PubMed] [Google Scholar]
  • Jiang BH, Agani F, Passaniti A, Semenza GL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 1997 Dec 1;57(23):5328–5335. [PubMed] [Google Scholar]
  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000 Jan 1;14(1):34–44. [PMC free article] [PubMed] [Google Scholar]
  • Salnikow K, Su W, Blagosklonny MV, Costa M. Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res. 2000 Jul 1;60(13):3375–3378. [PubMed] [Google Scholar]
  • Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993 Dec 15;82(12):3610–3615. [PubMed] [Google Scholar]
  • Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J. 1998 Sep 1;17(17):5085–5094. [PMC free article] [PubMed] [Google Scholar]
  • Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000 Feb 15;14(4):391–396. [PMC free article] [PubMed] [Google Scholar]
  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000 Mar 15;60(6):1541–1545. [PubMed] [Google Scholar]
  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000 Aug 18;275(33):25130–25138. [PubMed] [Google Scholar]
  • Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998 Oct;8(5):588–594. [PubMed] [Google Scholar]
  • Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, et al. PR39, a peptide regulator of angiogenesis. Nat Med. 2000 Jan;6(1):49–55. [PubMed] [Google Scholar]
  • Kojima Hidefumi, Gu Hua, Nomura Saeko, Caldwell Charles C, Kobata Tetsuji, Carmeliet Peter, Semenza Gregg L, Sitkovsky Michail V. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha -deficient chimeric mice. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2170–2174. [PMC free article] [PubMed] [Google Scholar]
  • Lukashev D, Caldwell C, Ohta A, Chen P, Sitkovsky M. Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes. J Biol Chem. 2001 Dec 28;276(52):48754–48763. [PubMed] [Google Scholar]
  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998 Jul 30;394(6692):485–490. [PubMed] [Google Scholar]
  • Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 2000 Nov 1;60(21):6189–6195. [PubMed] [Google Scholar]
  • Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001 Jun;11(3):293–299. [PubMed] [Google Scholar]
  • Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000;35(2):71–103. [PubMed] [Google Scholar]
  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999 Nov 15;59(22):5830–5835. [PubMed] [Google Scholar]
  • Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol. 1993;9:317–343. [PubMed] [Google Scholar]
  • Rothe J, Gehr G, Loetscher H, Lesslauer W. Tumor necrosis factor receptors--structure and function. Immunol Res. 1992;11(2):81–90. [PubMed] [Google Scholar]
  • Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995 May 19;81(4):495–504. [PubMed] [Google Scholar]
  • Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001 Sep;11(9):372–377. [PubMed] [Google Scholar]
  • Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995 May 19;81(4):513–523. [PubMed] [Google Scholar]
  • Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 1996 Nov 1;87(3):565–576. [PubMed] [Google Scholar]
  • Ting AT, Pimentel-Muiños FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J. 1996 Nov 15;15(22):6189–6196. [PMC free article] [PubMed] [Google Scholar]
  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem. 2000 Apr 7;275(14):10519–10526. [PubMed] [Google Scholar]
  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 1998 Mar;8(3):297–303. [PubMed] [Google Scholar]
  • Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. [PubMed] [Google Scholar]
  • Henkel T, Machleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. [PubMed] [Google Scholar]
  • Traenckner EB, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 1995 Jun 15;14(12):2876–2883. [PMC free article] [PubMed] [Google Scholar]
  • Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999 Nov 22;18(49):6853–6866. [PubMed] [Google Scholar]
  • Farrow Buckminster, Evers B Mark. Inflammation and the development of pancreatic cancer. Surg Oncol. 2002 May;10(4):153–169. [PubMed] [Google Scholar]
  • Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia. 2002 Jun;16(6):1053–1068. [PubMed] [Google Scholar]
  • Hellwig-Bürgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999 Sep 1;94(5):1561–1567. [PubMed] [Google Scholar]
  • Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL, Jr, Reichner JS. HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol. 2001 Dec;281(6):C1971–C1977. [PubMed] [Google Scholar]
  • Haddad JJ, Land SC. A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett. 2001 Sep 14;505(2):269–274. [PubMed] [Google Scholar]
  • Sandau KB, Zhou J, Kietzmann T, Brüne B. Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem. 2001 Oct 26;276(43):39805–39811. [PubMed] [Google Scholar]
  • Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 2000 Apr;12(4):419–429. [PubMed] [Google Scholar]
  • Melillo G, Taylor LS, Brooks A, Musso T, Cox GW, Varesio L. Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem. 1997 May 2;272(18):12236–12243. [PubMed] [Google Scholar]
  • Andrews NC, Faller DV. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. [PMC free article] [PubMed] [Google Scholar]
  • Zhong H, Hanrahan C, van der Poel H, Simons JW. Hypoxia-inducible factor 1alpha and 1beta proteins share common signaling pathways in human prostate cancer cells. Biochem Biophys Res Commun. 2001 Jun 8;284(2):352–356. [PubMed] [Google Scholar]
  • Peters RT, Liao SM, Maniatis T. IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Mol Cell. 2000 Mar;5(3):513–522. [PubMed] [Google Scholar]
  • Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001 Nov 9;294(5545):1337–1340. [PubMed] [Google Scholar]
  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG., Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001 Apr 20;292(5516):464–468. [PubMed] [Google Scholar]
  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001 Apr 20;292(5516):468–472. [PubMed] [Google Scholar]
  • Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 2001 Sep 17;20(18):5197–5206. [PMC free article] [PubMed] [Google Scholar]
  • Iliopoulos O, Kibel A, Gray S, Kaelin WG., Jr Tumour suppression by the human von Hippel-Lindau gene product. Nat Med. 1995 Aug;1(8):822–826. [PubMed] [Google Scholar]
  • Thornton RD, Lane P, Borghaei RC, Pease EA, Caro J, Mochan E. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J. 2000 Aug 15;350(Pt 1):307–312. [PMC free article] [PubMed] [Google Scholar]
  • Nelson Glyn, Paraoan Luminita, Spiller David G, Wilde Geraint J C, Browne Mark A, Djali Peter K, Unitt John F, Sullivan Elaine, Floettmann Eike, White Michael R H. Multi-parameter analysis of the kinetics of NF-kappaB signalling and transcription in single living cells. J Cell Sci. 2002 Mar 15;115(Pt 6):1137–1148. [PubMed] [Google Scholar]
  • Isaacs Jennifer S, Jung Yun-Jin, Mimnaugh Edward G, Martinez Alfredo, Cuttitta Frank, Neckers Leonard M. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002 Aug 16;277(33):29936–29944. [PubMed] [Google Scholar]
  • Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 1998 Jul;63(7):854–865. [PubMed] [Google Scholar]
  • Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996 Jan;2(1):87–90. [PubMed] [Google Scholar]
  • Means RT., Jr Erythropoietin in the treatment of anemia in chronic infectious, inflammatory, and malignant diseases. Curr Opin Hematol. 1995 May;2(3):210–213. [PubMed] [Google Scholar]
  • Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol. 1995 May-Jun;107(1-3):233–235. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-