Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
J Cell Biol. 1983 Oct 1; 97(4): 1131–1143.
PMCID: PMC2112608
PMID: 6194161

The fibrillar substructure of keratin filaments unraveled

Abstract

We show that intermediate-sized filaments reconstituted from human epidermal keratins appear unraveled in the presence of phosphate ions. In such unraveling filaments, up to four "4.5-nm protofibrils" can be distinguished, which are helically twisted around each other in a right- handed sense. Lowering the pH of phosphate-containing preparations causes the unraveling filaments to further dissociate into "2-nm protofilaments." In addition, we find that reconstitution of keratin extracts in the presence of small amounts of trypsin yields paracrystalline arrays of 4.5-nm protofibrils with a prominent 5.4-nm axial repeat. Limited proteolysis of intact filaments immobilized on an electron microscope grid also unveils the presence of 4.5-nm protofibrils within the filament with the same 5.4-nm axial repeat. These results, together with other published data, are consistent with a 10-nm filament model based on three distinct levels of helical organization: (a) the 2-nm protofilament, consisting of multi-chain extended alpha-helical segments coiled around each other; (b) the 4.5- nm protofibril, being a multi-stranded helix of protofilaments; and (c) the 10-nm filament, being a four-stranded helix of protofibrils.

Full Text

The Full Text of this article is available as a PDF (6.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. [PubMed] [Google Scholar]
  • Anderton BH. Intermediate filaments: a family of homologous structures. J Muscle Res Cell Motil. 1981 Jun;2(2):141–166. [PubMed] [Google Scholar]
  • Osborn M, Geisler N, Shaw G, Sharp G, Weber K. Intermediate filaments. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):413–429. [PubMed] [Google Scholar]
  • Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. [PubMed] [Google Scholar]
  • Skerrow D, Matoltsy AG, Matoltsy MN. Isolation and characterization of the helical regions of epidermal prekeratin. J Biol Chem. 1973 Jul 10;248(13):4820–4826. [PubMed] [Google Scholar]
  • Fraser RD, MacRae TP, Suzuki E. Structure of the alpha-keratin microfibril. J Mol Biol. 1976 Dec;108(2):435–452. [PubMed] [Google Scholar]
  • Steinert PM. Structure of the three-chain unit of the bovine epidermal keratin filament. J Mol Biol. 1978 Jul 25;123(1):49–70. [PubMed] [Google Scholar]
  • Steinert PM, Idler WW, Goldman RD. Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4534–4538. [PMC free article] [PubMed] [Google Scholar]
  • Renner W, Franke WW, Schmid E, Geisler N, Weber K, Mandelkow E. Reconstitution of intermediate-sized filaments from denatured monomeric vimentin. J Mol Biol. 1981 Jun 25;149(2):285–306. [PubMed] [Google Scholar]
  • Geisler N, Kaufmann E, Weber K. Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments. Cell. 1982 Aug;30(1):277–286. [PubMed] [Google Scholar]
  • Hanukoglu I, Fuchs E. The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins. Cell. 1982 Nov;31(1):243–252. [PubMed] [Google Scholar]
  • Geisler N, Weber K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1982;1(12):1649–1656. [PMC free article] [PubMed] [Google Scholar]
  • Steinert PM, Rice RH, Roop DR, Trus BL, Steven AC. Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature. 1983 Apr 28;302(5911):794–800. [PubMed] [Google Scholar]
  • Skerrow D. The structure of prekeratin. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1311–1316. [PubMed] [Google Scholar]
  • Metuzals J, Mushynski WE. Electron microscope and experimental investigations of the neurofilamentous network in Deiters' neurons. Relationship with the cell surface and nuclear pores. J Cell Biol. 1974 Jun;61(3):701–722. [PMC free article] [PubMed] [Google Scholar]
  • Schlaepfer WW. Studies on the isolation and substructure of mammalian neurofilaments. J Ultrastruct Res. 1977 Nov;61(2):149–157. [PubMed] [Google Scholar]
  • Krishnan N, Kaiserman-Abramof IR, Lasek RJ. Helical substructure of neurofilaments isolated from Myxicola and squid giant axons. J Cell Biol. 1979 Aug;82(2):323–335. [PMC free article] [PubMed] [Google Scholar]
  • Stromer MH, Huiatt TW, Richardson RL, Robson RM. Disassembly of synthetic 10-nm desmin filaments from smooth muscle into protofilaments. Eur J Cell Biol. 1981 Aug;25(1):136–143. [PubMed] [Google Scholar]
  • Steven AC, Wall J, Hainfeld J, Steinert PM. Structure of fibroblastic intermediate filaments: analysis of scanning transmission electron microscopy. Proc Natl Acad Sci U S A. 1982 May;79(10):3101–3105. [PMC free article] [PubMed] [Google Scholar]
  • Steven AC, Hainfeld JF, Trus BL, Wall JS, Steinert PM. The distribution of mass in heteropolymer intermediate filaments assembled in vitro. Stem analysis of vimentin/desmin and bovine epidermal keratin. J Biol Chem. 1983 Jul 10;258(13):8323–8329. [PubMed] [Google Scholar]
  • Sun TT, Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  • Deatherage JF, Henderson R, Capaldi RA. Relationship between membrane and cytoplasmic domains in cytochrome c oxidase by electron microscopy in media of different density. J Mol Biol. 1982 Jul 5;158(3):501–514. [PubMed] [Google Scholar]
  • Shotton DM, Burke BE, Branton D. The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol. 1979 Jun 25;131(2):303–329. [PubMed] [Google Scholar]
  • Fowler WE, Erickson HP. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. [PubMed] [Google Scholar]
  • Kistler J, Aebi U, Kellenberger E. Freeze drying and shadowing a two-dimensional periodic specimen. J Ultrastruct Res. 1977 Apr;59(1):76–86. [PubMed] [Google Scholar]
  • Smith PR. Freeze-drying specimens for electron microscopy. J Ultrastruct Res. 1980 Sep;72(3):380–384. [PubMed] [Google Scholar]
  • Wrigley NG. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. [PubMed] [Google Scholar]
  • Fukuyama K, Murozuka T, Caldwell R, Epstein WL. Divalent cation stimulation of in vitro fibre assembly from epidermal keratin protein. J Cell Sci. 1978 Oct;33:255–263. [PubMed] [Google Scholar]
  • Dale BA, Holbrook KA, Steinert PM. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978 Dec 14;276(5689):729–731. [PubMed] [Google Scholar]
  • Steinert PM, Cantieri JS, Teller DC, Lonsdale-Eccles JD, Dale BA. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4097–4101. [PMC free article] [PubMed] [Google Scholar]
  • Henderson D, Geisler N, Weber K. A periodic ultrastructure in intermediate filaments. J Mol Biol. 1982 Feb 25;155(2):173–176. [PubMed] [Google Scholar]
  • Milam L, Erickson HP. Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments. J Cell Biol. 1982 Sep;94(3):592–596. [PMC free article] [PubMed] [Google Scholar]
  • Thaler M, Fukuyama K, Epstein WL, Fisher KA. Comparative studies of keratins isolated from psoriasis and atopic dermatitis. J Invest Dermatol. 1980 Aug;75(2):156–158. [PubMed] [Google Scholar]
  • O'Brien EJ, Gillis JM, Couch J. Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J Mol Biol. 1975 Dec 15;99(3):461–475. [PubMed] [Google Scholar]
  • Fowler WE, Aebi U. Polymorphism of actin paracrystals induced by polylysine. J Cell Biol. 1982 May;93(2):452–458. [PMC free article] [PubMed] [Google Scholar]
  • Zackroff RV, Goldman RD. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6226–6230. [PMC free article] [PubMed] [Google Scholar]
  • Zackroff RV, Goldman RD. In vitro reassembly of squid brain intermediate filaments (neurofilaments): purification by assembly-disassembly. Science. 1980 Jun 6;208(4448):1152–1155. [PubMed] [Google Scholar]
  • Day WA, Gilbert DS. X-ray diffraction pattern of axoplasm. Biochim Biophys Acta. 1972 Dec 28;285(2):503–506. [PubMed] [Google Scholar]
  • Steinert PM, Idler WW, Zimmerman SB. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. [PubMed] [Google Scholar]
  • Steinert PM, Zimmerman SB, Starger JM, Goldman RD. Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6098–6101. [PMC free article] [PubMed] [Google Scholar]
  • Wais-Steider C, Eagles PA, Gilbert DS, Hopkins JM. Structural similarities and differences amongst neurofilaments. J Mol Biol. 1983 Apr 5;165(2):393–400. [PubMed] [Google Scholar]
  • Geisler N, Weber K. Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis: desmin and vimentin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4120–4123. [PMC free article] [PubMed] [Google Scholar]
  • Geisler N, Plessmann U, Weber K. Related amino acid sequences in neurofilaments and non-neural intermediate filaments. Nature. 1982 Apr 1;296(5856):448–450. [PubMed] [Google Scholar]
  • Parry DA, Crewther WG, Fraser RD, MacRae TP. Structure of alpha-keratin: structural implication of the amino acid sequences of the type I and type II chain segments. J Mol Biol. 1977 Jun 25;113(2):449–454. [PubMed] [Google Scholar]
  • McLachlan AD. Coiled coil formation and sequence regularities in the helical regions of alpha-keratin. J Mol Biol. 1978 Sep 5;124(1):297–304. [PubMed] [Google Scholar]
  • McLachlan AD, Stewart M. Periodic charge distribution in the intermediate filament proteins desmin and vimentin. J Mol Biol. 1982 Dec 15;162(3):693–698. [PubMed] [Google Scholar]
  • Ahmadi B, Speakman PT. Suberimidate crosslinking shows that a rod-shaped, low cystine, high helix protein prepared by limited proteolysis of reduced wool has four protein chains. FEBS Lett. 1978 Oct 15;94(2):365–367. [PubMed] [Google Scholar]
  • Eriksson A, Thornell LE. Intermediate (skeletin) filaments in heart Purkinje fibers. A correlative morphological and biochemical identification with evidence of a cytoskeletal function. J Cell Biol. 1979 Feb;80(2):231–247. [PMC free article] [PubMed] [Google Scholar]
  • Neugebauer DC, Zingsheim HP. The two faces of the purple membrane. Structural differences revealed by metal decoration. J Mol Biol. 1978 Aug 5;123(2):235–246. [PubMed] [Google Scholar]
  • Quinlan RA, Franke WW. Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3452–3456. [PMC free article] [PubMed] [Google Scholar]
  • Pruss RM, Mirsky R, Raff MC, Thorpe R, Dowding AJ, Anderton BH. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell. 1981 Dec;27(3 Pt 2):419–428. [PubMed] [Google Scholar]
  • Rueger DC, Huston JS, Dahl D, Bignami A. Formation of 100 A filaments from purified glial fibrillary acidic protein in vitro. J Mol Biol. 1979 Nov 25;135(1):53–68. [PubMed] [Google Scholar]
  • Evans RM, Fink LM. An alteration in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultured mammalian cells. Cell. 1982 May;29(1):43–52. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

-