Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
J Clin Microbiol. 1995 Jun; 33(6): 1537–1547.
PMCID: PMC228211
PMID: 7650182

Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains.

Abstract

Fifty-nine isolates of Staphylococcus aureus and a single strain of Staphylococcus intermedius were typed by arbitrarily primed PCR (AP-PCR). To study reproducibility and discriminatory abilities, AP-PCR was carried out in seven laboratories with a standardized amplification protocol, template DNA isolated in a single institution, and a common set of three primers with different resolving powers. The 60 strains could be divided into 16 to 30 different genetic types, depending on the laboratory. This difference in resolution was due to differences in technical procedures (as shown by the deliberate introduction of experimental variables) and/or the interpretation of the DNA fingerprints. However, this did not hamper the epidemiologically correct clustering of related strains. The average number of different genotypes identified exceeded those of the more traditional typing strategies (F. C. Tenover, R. Arbeit, G. Archer, J. Biddle, S. Byrne, R. Goering, G. Hancock, G. A. Hebert, B. Hill, R. Hollis, W. R. Jarvis, B. Kreiswirth, W. Eisner, J. Maslow, L. K. McDougal, J. M. Miller, M. Mulligan, and M. A. Pfaller, J. Clin. Microbiol. 32:407-415, 1994). Comparison of AP-PCR with pulsed-field gel electrophoresis (PFGE) indicated the existence of strains with constant PFGE types but variable AP-PCR types. The reverse (constant AP-PCR and variable PFGE patterns) was also observed. This indicates additional resolution for combined analyses. It is concluded that AP-PCR is well suited for genetic analysis and monitoring of nosocomial spreading of staphylococci. The interlaboratory reproducibility of DNA-banding patterns and the intralaboratory standardization need improvement.

Full Text

The Full Text of this article is available as a PDF (818K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992 Oct 11;20(19):5137–5142. [PMC free article] [PubMed] [Google Scholar]
  • Bingen E. Applications of molecular methods to epidemiologic investigations of nosocomial infections in a pediatric hospital. Infect Control Hosp Epidemiol. 1994 Jul;15(7):488–493. [PubMed] [Google Scholar]
  • Brikun I, Suziedelis K, Berg DE. DNA sequence divergence among derivatives of Escherichia coli K-12 detected by arbitrary primer PCR (random amplified polymorphic DNA) fingerprinting. J Bacteriol. 1994 Mar;176(6):1673–1682. [PMC free article] [PubMed] [Google Scholar]
  • Brousseau R, Saint-Onge A, Préfontaine G, Masson L, Cabana J. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl Environ Microbiol. 1993 Jan;59(1):114–119. [PMC free article] [PubMed] [Google Scholar]
  • Caetano-Anollés G, Bassam BJ, Gresshoff PM. Buffer components tailor DNA amplification with arbitrary primers. PCR Methods Appl. 1994 Aug;4(1):59–61. [PubMed] [Google Scholar]
  • Elaichouni A, Verschraegen G, Claeys G, Devleeschouwer M, Godard C, Vaneechoutte M. Pseudomonas aeruginosa serotype O12 outbreak studied by arbitrary primer PCR. J Clin Microbiol. 1994 Mar;32(3):666–671. [PMC free article] [PubMed] [Google Scholar]
  • Goetz MB, Mulligan ME, Kwok R, O'Brien H, Caballes C, Garcia JP. Management and epidemiologic analyses of an outbreak due to methicillin-resistant Staphylococcus aureus. Am J Med. 1992 Jun;92(6):607–614. [PubMed] [Google Scholar]
  • He G, Prakash CS, Jarret RL, Tuzun S, Qiu J. Comparison of gel matrices for resolving PCR-amplified DNA fingerprint profiles. PCR Methods Appl. 1994 Aug;4(1):50–51. [PubMed] [Google Scholar]
  • Jarvis WR. Usefulness of molecular epidemiology for outbreak investigations. Infect Control Hosp Epidemiol. 1994 Jul;15(7):500–503. [PubMed] [Google Scholar]
  • Lamboy WF. Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Methods Appl. 1994 Aug;4(1):31–37. [PubMed] [Google Scholar]
  • Lamboy WF. Computing genetic similarity coefficients from RAPD data: correcting for the effects of PCR artifacts caused by variation in experimental conditions. PCR Methods Appl. 1994 Aug;4(1):38–43. [PubMed] [Google Scholar]
  • Maslow JN, Mulligan ME, Arbeit RD. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis. 1993 Aug;17(2):153–164. [PubMed] [Google Scholar]
  • Mazurier SI, Audurier A, Marquet-Van der Mee N, Notermans S, Wernars K. A comparative study of randomly amplified polymorphic DNA analysis and conventional phage typing for epidemiological studies of Listeria monocytogenes isolates. Res Microbiol. 1992 Jun;143(5):507–512. [PubMed] [Google Scholar]
  • Penner GA, Bush A, Wise R, Kim W, Domier L, Kasha K, Laroche A, Scoles G, Molnar SJ, Fedak G. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl. 1993 May;2(4):341–345. [PubMed] [Google Scholar]
  • Pfaller MA, Wakefield DS, Hollis R, Fredrickson M, Evans E, Massanari RM. The clinical microbiology laboratory as an aid in infection control. The application of molecular techniques in epidemiologic studies of methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 1991 May-Jun;14(3):209–217. [PubMed] [Google Scholar]
  • Ralph D, McClelland M, Welsh J, Baranton G, Perolat P. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J Bacteriol. 1993 Feb;175(4):973–981. [PMC free article] [PubMed] [Google Scholar]
  • Saulnier P, Bourneix C, Prévost G, Andremont A. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Apr;31(4):982–985. [PMC free article] [PubMed] [Google Scholar]
  • Struelens MJ, Bax R, Deplano A, Quint WG, Van Belkum A. Concordant clonal delineation of methicillin-resistant Staphylococcus aureus by macrorestriction analysis and polymerase chain reaction genome fingerprinting. J Clin Microbiol. 1993 Aug;31(8):1964–1970. [PMC free article] [PubMed] [Google Scholar]
  • Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S, Goering R, Hancock G, Hébert GA, Hill B, Hollis R, et al. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994 Feb;32(2):407–415. [PMC free article] [PubMed] [Google Scholar]
  • van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994 Apr;7(2):174–184. [PMC free article] [PubMed] [Google Scholar]
  • van Belkum A, Bax R, Prevost G. Comparison of four genotyping assays for epidemiological study of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 1994 May;13(5):420–424. [PubMed] [Google Scholar]
  • van Belkum A, Bax R, Peerbooms P, Goessens WH, van Leeuwen N, Quint WG. Comparison of phage typing and DNA fingerprinting by polymerase chain reaction for discrimination of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 1993 Apr;31(4):798–803. [PMC free article] [PubMed] [Google Scholar]
  • van Belkum A, Meis J. Polymerase chain reaction-mediated genotyping in microbial epidemiology. Clin Infect Dis. 1994 Jun;18(6):1017–1019. [PubMed] [Google Scholar]
  • van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993 Feb;31(2):406–409. [PMC free article] [PubMed] [Google Scholar]
  • Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. [PMC free article] [PubMed] [Google Scholar]
  • Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. [PMC free article] [PubMed] [Google Scholar]
  • Welsh J, Pretzman C, Postic D, Saint Girons I, Baranton G, McClelland M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int J Syst Bacteriol. 1992 Jul;42(3):370–377. [PubMed] [Google Scholar]
  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

-