Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
AAPS J. 2006 Sep; 8(3): E521–E531.
Published online 2006 Aug 18. doi: 10.1208/aapsj080362
PMCID: PMC2761060
PMID: 17025271

Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents

Abstract

Increasing evidence suggests that mitochondrial dysfunction and oxidative stress play a crucial role in the majority of neurodegenerative diseases. Mitochondria are a major source of intracellular reactive oxygen species (ROS) and are particularly vulnerable to oxidative stress. Oxidative damage to mitochondria has been shown to impair mitochondrial function and lead to cell death via apoptosis and necrosis. Because dysfunctional mitochondria will produce more ROS, a feed-forward loop is set up whereby ROS-mediated oxidative damage to mitochondria favors more ROS generation, resulting in a vicious cycle. It is now appreciated that reduction of mitochondrial oxidative stress may prevent or slow down the progression of these neurodegenerative disorders. However, if mitochondria are the major source of intracellular ROS and mitochondria are most vulnerable to oxidative damage, then it would be ideal to deliver the antioxidant therapy to mitochondria. This review will summarize the development of a novel class of mitochondria-targeted antioxidants that can protect mitochondria against oxidative stress and prevent neuronal cell death in animal models of stroke, Parkinson’s disease, and amyotrophic lateral sclerosis.

Keywords: Reactive oxygen species, mitochondrial permeability transition, apoptosis, necrosis, Parkinson’s disease, amyotrophic lateral sclerosis

Full Text

The Full Text of this article is available as a PDF (389K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

1. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495–505. doi: 10.1002/ana.20624. [PubMed] [CrossRef] [Google Scholar]
2. Schapira AH. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim Biophys Acta. 1999;1410:159–170. doi: 10.1016/S0005-2728(98)00164-9. [PubMed] [CrossRef] [Google Scholar]
3. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA. 2003;100:4078–4083. doi: 10.1073/pnas.0737556100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004;279:18614–18622. doi: 10.1074/jbc.M401135200. [PubMed] [CrossRef] [Google Scholar]
5. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA. 2004;101:10726–10731. doi: 10.1073/pnas.0403649101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. [PubMed] [CrossRef] [Google Scholar]
7. Crouch PJ, Blake R, Duce JA, et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-betal-42. J Neurosci. 2005;25:672–679. doi: 10.1523/JNEUROSCI.4276-04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Beckman JS, Estevez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 2001;24:S15–S20. doi: 10.1016/S0166-2236(00)01981-0. [PubMed] [CrossRef] [Google Scholar]
9. Mattiazzi M, D’Aurelio M, Gajewski CD, et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem. 2002;277:29626–29633. doi: 10.1074/jbc.M203065200. [PubMed] [CrossRef] [Google Scholar]
10. Ferreirinha F, Quattrini A, Pirozzi M, et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest. 2004;113:231–242. [PMC free article] [PubMed] [Google Scholar]
11. Browne SE, Beal MF. The energetics of Huntington’s disease. Neurochem Res. 2004;29:531–546. doi: 10.1023/B:NERE.0000014824.04728.dd. [PubMed] [CrossRef] [Google Scholar]
12. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med. 2002;32:797–803. doi: 10.1016/S0891-5849(02)00780-3. [PubMed] [CrossRef] [Google Scholar]
13. Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Brain Res Rev. 2005;49:618–632. doi: 10.1016/j.brainresrev.2005.03.004. [PubMed] [CrossRef] [Google Scholar]
14. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10:S18–S25. doi: 10.1038/nrn1434. [PubMed] [CrossRef] [Google Scholar]
15. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med. 2002;32:1264–1275. doi: 10.1016/S0891-5849(02)00804-3. [PubMed] [CrossRef] [Google Scholar]
16. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 2003;23:2212–2217. [PMC free article] [PubMed] [Google Scholar]
17. Casoni F, Basso M, Massignan T, et al. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem. 2005;280:16295–16304. doi: 10.1074/jbc.M413111200. [PubMed] [CrossRef] [Google Scholar]
18. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17:3–8. doi: 10.1023/A:1027374931887. [PubMed] [CrossRef] [Google Scholar]
19. Muller FL, Liu Y, Van RH. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–49073. doi: 10.1074/jbc.M407715200. [PubMed] [CrossRef] [Google Scholar]
20. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–230. doi: 10.1016/S0891-5849(00)00317-8. [PubMed] [CrossRef] [Google Scholar]
21. Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner.Neurobiol Aging. In press. [PubMed]
22. Navarro A. Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med. 2004;25:37–48. doi: 10.1016/j.mam.2004.02.007. [PubMed] [CrossRef] [Google Scholar]
23. MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998;37:1613–1622. doi: 10.1021/bi971894b. [PubMed] [CrossRef] [Google Scholar]
24. Chen JJ, Yu BP. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med. 1994;17:411–418. doi: 10.1016/0891-5849(94)90167-8. [PubMed] [CrossRef] [Google Scholar]
25. Laganiere S, Yu BP. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology. 1993;39:7–18. doi: 10.1159/000213509. [PubMed] [CrossRef] [Google Scholar]
26. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70:200–214. doi: 10.1007/s10541-005-0102-7. [PubMed] [CrossRef] [Google Scholar]
27. Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 2003;17:2202–2208. doi: 10.1096/fj.03-0012com. [PubMed] [CrossRef] [Google Scholar]
28. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun. 1999;264:343–347. doi: 10.1006/bbrc.1999.1410. [PubMed] [CrossRef] [Google Scholar]
29. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233–249. doi: 10.1042/0264-6021:3410233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. Kroemer G, Dallaporta B, Resche-Rigon M. the mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [PubMed] [CrossRef] [Google Scholar]
31. Vieira HL, Belzacq AS, Haouzi D, et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene. 2001;20:4305–4316. doi: 10.1038/sj.onc.1204575. [PubMed] [CrossRef] [Google Scholar]
32. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA. 2002;99:1259–1263. doi: 10.1073/pnas.241655498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Marzo I, Brenner C, Zamzami N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998;281:2027–2031. doi: 10.1126/science.281.5385.2027. [PubMed] [CrossRef] [Google Scholar]
34. Green DR, Reed JC. Mitochondrial and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309. [PubMed] [CrossRef] [Google Scholar]
35. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–489. doi: 10.1016/S0092-8674(00)80434-1. [PubMed] [CrossRef] [Google Scholar]
36. Erdelyi K, Bakondi E, Gergely P, Szabo C, Virag L. Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation. Cell Mol Life Sci. 2005;62:751–759. doi: 10.1007/s00018-004-4506-0. [PubMed] [CrossRef] [Google Scholar]
37. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci. 2003;991:120–131. doi: 10.1111/j.1749-6632.2003.tb07470.x. [PubMed] [CrossRef] [Google Scholar]
38. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–1082. doi: 10.1046/j.1471-4159.2001.00490.x. [PubMed] [CrossRef] [Google Scholar]
39. Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46. [PubMed] [Google Scholar]
40. Beal MF, Matthews RT. Coenzyme Q10 in the central nervous system and its potential usefulness in the treatment of neurodegenerative diseases. Mol Aspects Med. 1997;18(Suppl):S169–S179. doi: 10.1016/S0098-2997(97)00024-1. [PubMed] [CrossRef] [Google Scholar]
41. Day BJ. Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today. 2004;9:557–566. doi: 10.1016/S1359-6446(04)03139-3. [PubMed] [CrossRef] [Google Scholar]
42. Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG. Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur J Neurosci. 2003;18:1387–1401. doi: 10.1046/j.1460-9568.2003.02864.x. [PubMed] [CrossRef] [Google Scholar]
43. Pong K, Doctrow SR, Baudry M. Prevention of 1-methyl-4-phenylpyridinium-and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res. 2000;881:182–189. doi: 10.1016/S0006-8993(00)02841-9. [PubMed] [CrossRef] [Google Scholar]
44. Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett. 2001;304:157–160. doi: 10.1016/S0304-3940(01)01784-0. [PubMed] [CrossRef] [Google Scholar]
45. Peng J, Stevenson FF, Doctrow SR, Andersen JK. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem. 2005;280:29194–29198. doi: 10.1074/jbc.M500984200. [PubMed] [CrossRef] [Google Scholar]
46. Petri S, Kiaei M, Kipiani K, et al. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2006;22:40–49. doi: 10.1016/j.nbd.2005.09.013. [PubMed] [CrossRef] [Google Scholar]
47. Melov S, Schneider JA, Day BJ, et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet. 1998;18:159–163. doi: 10.1038/ng0298-159. [PubMed] [CrossRef] [Google Scholar]
48. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–1911. doi: 10.1126/science.1106653. [PubMed] [CrossRef] [Google Scholar]
49. Shen SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta. 2006;1762:256–265. [PubMed] [Google Scholar]
50. Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41:235–250. doi: 10.1016/S0169-409X(99)00069-1. [PubMed] [CrossRef] [Google Scholar]
51. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 2003;17:1972–1974. [PubMed] [Google Scholar]
52. Dhanasekaran A, Kotamraju S, Kalivendi SV, et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem. 2004;279:37575–37587. doi: 10.1074/jbc.M404003200. [PubMed] [CrossRef] [Google Scholar]
53. Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA. 2003;100:5407–5412. doi: 10.1073/pnas.0931245100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
54. Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–1095. doi: 10.1096/fj.05-3718com. [PubMed] [CrossRef] [Google Scholar]
55. Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999;263:709–716. doi: 10.1046/j.1432-1327.1999.00543.x. [PubMed] [CrossRef] [Google Scholar]
56. Kelso GF, Porteous CM, Coulter CV, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–4596. doi: 10.1074/jbc.M009093200. [PubMed] [CrossRef] [Google Scholar]
57. James AM, Cocheme HM, Smith RA, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005;280:21295–21312. doi: 10.1074/jbc.M501527200. [PubMed] [CrossRef] [Google Scholar]
58. Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial sweeling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–34690. doi: 10.1074/jbc.M402999200. [PubMed] [CrossRef] [Google Scholar]
59. Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 2006;8:E277–E283. doi: 10.1208/aapsj080232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J. 2004;381:241–248. doi: 10.1042/BJ20040259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425–432. doi: 10.1124/jpet.102.040147. [PubMed] [CrossRef] [Google Scholar]
62. Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005;70:1796–1806. doi: 10.1016/j.bcp.2005.08.022. [PubMed] [CrossRef] [Google Scholar]
63. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem. 2003;278:31192–31201. doi: 10.1074/jbc.M303938200. [PubMed] [CrossRef] [Google Scholar]
64. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 1996;271:18188–18193. doi: 10.1074/jbc.271.30.18188. [PubMed] [CrossRef] [Google Scholar]
65. Szeto HH, Schiller PW, Zhao K, Luo G. Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides. FASEB J. 2005;19:118–120. [PubMed] [Google Scholar]
66. Haidara K, Morel I, Abalea V, Gascon BM, Denizeau F. Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum. Biochim Biophys Acta. 2002;1542:173–185. doi: 10.1016/S0167-4889(01)00178-1. [PubMed] [CrossRef] [Google Scholar]
67. Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C. Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochem Pharmacol. 2004;67:611–620. doi: 10.1016/j.bcp.2003.09.026. [PubMed] [CrossRef] [Google Scholar]
68. Byrne AM, Lemasters JJ, Nieminen AL. Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes. Hepatology. 1999;29:1523–1531. doi: 10.1002/hep.510290521. [PubMed] [CrossRef] [Google Scholar]
69. Nieminen AL, Byrne AM, Herman B, Lemasters JJ. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol. 1997;272:C1286–C1294. [PubMed] [Google Scholar]
70. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J Biol Chem. 2003;278:13294–13301. doi: 10.1074/jbc.M208670200. [PubMed] [CrossRef] [Google Scholar]
71. Szeto HH, Lovelace JL, Fridland G, et al. In vivo pharmacokinetics of selective mu-opioid peptide agonists. J Pharmacol Exp Ther. 2001;298:57–61. [PubMed] [Google Scholar]
72. Zhao GM, Wu D, Soong Y, et al. Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: role of delta-opioid receptors. J Pharmacol Exp Ther. 2002;302:188–196. doi: 10.1124/jpet.302.1.188. [PubMed] [CrossRef] [Google Scholar]
73. Przyklenk K. Pharmacologic treatment of the stunned myocardium: the concepts and the challenges. Coron Artery Dis. 2001;12:363–369. doi: 10.1097/00019501-200108000-00005. [PubMed] [CrossRef] [Google Scholar]
74. Masini E, Cuzzocrea S, Mazzon E, Marzocca C, Mannaioni PF, Salvemini D. Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br J Pharmacol. 2002;136:905–917. doi: 10.1038/sj.bjp.0704774. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. Mackensen GB, Patel M, Sheng H, et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci. 2001;21:4582–4592. [PMC free article] [PubMed] [Google Scholar]
76. Wu D, Soong Y, Zhao GM, Szeto HH. A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning. Am J Physiol Heart Circ Physiol. 2002;283:H783–H791. [PubMed] [Google Scholar]
77. Song W, Shin J, Lee J, et al. A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Coron Artery Dis. 2005;16:407–410. doi: 10.1097/00019501-200509000-00011. [PubMed] [CrossRef] [Google Scholar]
78. Cho J, Won K, Wu D, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats.Coron Artery Dis. 2006; In press. [PubMed]
79. Cho S, Szeto HH, Kim HJ, Pinto J. A cell permeable antioxidant peptide SS31 attenuates CD36-mediated ischemic injury via normalizing redox state [abstract] Washington, DC: Society for Neuroscience; 2005. [Google Scholar]
80. Vijayvergiya C, Beal MF, Buck J, Manfredi G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci. 2005;25:2463–2470. doi: 10.1523/JNEUROSCI.4385-04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Petri S, Kiaei M, Damiano M, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006;98:1141–1148. doi: 10.1111/j.1471-4159.2006.04018.x. [PubMed] [CrossRef] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

-