Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Proc Natl Acad Sci U S A. 1988 Jun; 85(12): 4200–4204.
PMCID: PMC280394
PMID: 2967970

Trans-activation of the human immunodeficiency virus long terminal repeat sequences, expressed in an adenovirus vector, by the adenovirus E1A 13S protein.

Abstract

The human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR) sequences were inserted into adenovirus in place of the E1 region. The HIV-1 LTR contained in this recombinant adenovirus responds to trans-activation by tatIII in a HeLa cell line constitutively expressing that HIV-1 gene product. In addition, the HIV-1 LTR is activated by the adenovirus E1A 13S, but not 12S or 9S, gene product when it is supplied in trans by a coinfecting wild-type adenovirus. The Rous sarcoma virus LTR, in a similar recombinant adenovirus, is insensitive to tatIII but is also trans-activated by the E1A 13S protein. The action of the 13S E1A and tatIII proteins are additive for the HIV-1 LTR in the context of adenovirus and they appear to act at the transcriptional level. As in HeLa cells, the adenovirus-borne HIV-1 LTR is inactive in the absence of a trans-activator in H9 and Jurkat cells, two human leukemic T-cell lines. This suggests that recombinant adenoviruses have diagnostic potential for the detection of trans-activators of the HIV-1 LTR that are present in circulating human lymphocytes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. [PubMed] [Google Scholar]
  • Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. [PubMed] [Google Scholar]
  • Rosen CA, Sodroski JG, Haseltine WA. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell. 1985 Jul;41(3):813–823. [PubMed] [Google Scholar]
  • Jones KA, Kadonaga JT, Luciw PA, Tjian R. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science. 1986 May 9;232(4751):755–759. [PubMed] [Google Scholar]
  • Kaufman JD, Valandra G, Roderiquez G, Bushar G, Giri C, Norcross MA. Phorbol ester enhances human immunodeficiency virus-promoted gene expression and acts on a repeated 10-base-pair functional enhancer element. Mol Cell Biol. 1987 Oct;7(10):3759–3766. [PMC free article] [PubMed] [Google Scholar]
  • Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987 Apr 16;326(6114):711–713. [PubMed] [Google Scholar]
  • Muesing MA, Smith DH, Capon DJ. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell. 1987 Feb 27;48(4):691–701. [PubMed] [Google Scholar]
  • Tong-Starksen SE, Luciw PA, Peterlin BM. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6845–6849. [PMC free article] [PubMed] [Google Scholar]
  • Peterlin BM, Luciw PA, Barr PJ, Walker MD. Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9734–9738. [PMC free article] [PubMed] [Google Scholar]
  • Kao SY, Calman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature. 1987 Dec 3;330(6147):489–493. [PubMed] [Google Scholar]
  • Rosen CA, Sodroski JG, Goh WC, Dayton AI, Lippke J, Haseltine WA. Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature. 1986 Feb 13;319(6054):555–559. [PubMed] [Google Scholar]
  • Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell. 1986 Sep 26;46(7):973–982. [PubMed] [Google Scholar]
  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 1986 Sep 12;46(6):807–817. [PubMed] [Google Scholar]
  • Wright CM, Felber BK, Paskalis H, Pavlakis GN. Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science. 1986 Nov 21;234(4779):988–992. [PubMed] [Google Scholar]
  • Hauber J, Perkins A, Heimer EP, Cullen BR. Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6364–6368. [PMC free article] [PubMed] [Google Scholar]
  • Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin MA. Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9759–9763. [PMC free article] [PubMed] [Google Scholar]
  • Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, Pitha PM. Herpes simplex virus type-1 can reactivate transcription of latent human immunodeficiency virus. Nature. 1987 Jan 1;325(6099):67–70. [PubMed] [Google Scholar]
  • Rando RF, Pellett PE, Luciw PA, Bohan CA, Srinivasan A. Transactivation of human immunodeficiency virus by herpesviruses. Oncogene. 1987 Mar;1(1):13–18. [PubMed] [Google Scholar]
  • Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, Hayward GS, Pitha PM. Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7408–7412. [PMC free article] [PubMed] [Google Scholar]
  • Ostrove JM, Leonard J, Weck KE, Rabson AB, Gendelman HE. Activation of the human immunodeficiency virus by herpes simplex virus type 1. J Virol. 1987 Dec;61(12):3726–3732. [PMC free article] [PubMed] [Google Scholar]
  • Berk AJ, Sharp PA. Structure of the adenovirus 2 early mRNAs. Cell. 1978 Jul;14(3):695–711. [PubMed] [Google Scholar]
  • Chow LT, Broker TR, Lewis JB. Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol. 1979 Oct 25;134(2):265–303. [PubMed] [Google Scholar]
  • Perricaudet M, Akusjärvi G, Virtanen A, Pettersson U. Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature. 1979 Oct 25;281(5733):694–696. [PubMed] [Google Scholar]
  • Kitchingman GR, Westphal H. The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol. 1980 Feb 15;137(1):23–48. [PubMed] [Google Scholar]
  • Montell C, Fisher EF, Caruthers MH, Berk AJ. Resolving the functions of overlapping viral genes by site-specific mutagenesis at a mRNA splice site. Nature. 1982 Feb 4;295(5848):380–384. [PubMed] [Google Scholar]
  • Berk AJ. Adenovirus promoters and E1A transactivation. Annu Rev Genet. 1986;20:45–79. [PubMed] [Google Scholar]
  • Borrelli E, Hen R, Chambon P. Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature. 1984 Dec 13;312(5995):608–612. [PubMed] [Google Scholar]
  • Velcich A, Ziff E. Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell. 1985 Mar;40(3):705–716. [PubMed] [Google Scholar]
  • Rice AP, Mathews MB. Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature. 1988 Apr 7;332(6164):551–553. [PubMed] [Google Scholar]
  • Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. [PubMed] [Google Scholar]
  • Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. [PMC free article] [PubMed] [Google Scholar]
  • Sodroski J, Rosen C, Wong-Staal F, Salahuddin SZ, Popovic M, Arya S, Gallo RC, Haseltine WA. Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science. 1985 Jan 11;227(4683):171–173. [PubMed] [Google Scholar]
  • Gaynor RB, Tsukamoto A, Montell C, Berk AJ. Enhanced expression of adenovirus transforming proteins. J Virol. 1982 Oct;44(1):276–285. [PMC free article] [PubMed] [Google Scholar]
  • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B. Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol. 1986 Mar;57(3):765–775. [PMC free article] [PubMed] [Google Scholar]
  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol. 1986 Mar;6(3):887–899. [PMC free article] [PubMed] [Google Scholar]
  • Thomas GP, Mathews MB. DNA replication and the early to late transition in adenovirus infection. Cell. 1980 Nov;22(2 Pt 2):523–533. [PubMed] [Google Scholar]
  • Gaynor RB, Berk AJ. Cis-acting induction of adenovirus transcription. Cell. 1983 Jul;33(3):683–693. [PubMed] [Google Scholar]
  • Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M. E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol. 1985 Oct;5(10):2653–2661. [PMC free article] [PubMed] [Google Scholar]
  • Wu L, Rosser DS, Schmidt MC, Berk A. A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature. 1987 Apr 2;326(6112):512–515. [PubMed] [Google Scholar]
  • Garcia J, Wu F, Gaynor R. Upstream regulatory regions required to stabilize binding to the TATA sequence in an adenovirus early promoter. Nucleic Acids Res. 1987 Oct 26;15(20):8367–8385. [PMC free article] [PubMed] [Google Scholar]
  • Nabel GJ, Rice SA, Knipe DM, Baltimore D. Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science. 1988 Mar 11;239(4845):1299–1302. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

-