Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Proc Natl Acad Sci U S A. 1988 Dec; 85(23): 9224–9228.
PMCID: PMC282711
PMID: 3194421

Missense mutations in an infectious human immunodeficiency viral genome: functional mapping of tat and identification of the rev splice acceptor.

Abstract

Single nucleotide alterations were introduced into an infectious clone of human immunodeficiency virus type 1 to create a series of missense mutants in the tat coding region. Although mutations in a proline-rich region and a basic lysine-arginine-rich region resulted in wild-type phenotypes, five of six mutations in a cysteine-rich domain completely abolished tat activity and virus replication. One cysteine mutant retained tat activity but was negative for virus expression. Surprisingly, this mutant could not be complemented by tat, and virus expression was restored only by cotransfection with a plasmid expressing the rev gene. Another mutant with an alteration toward the C-terminal region showed significantly reduced tat activity and required complementation by a combination of tat and rev for virus replication. Further analysis revealed that a previously unrecognized splice acceptor site within this region, apparently used to generate the rev mRNA, had been altered. We provide evidence suggesting that tat and rev proteins are encoded by distinct mRNA species.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Wong-Staal F, Gallo RC. Human T-lymphotropic retroviruses. Nature. 1985 Oct 3;317(6036):395–403. [PubMed] [Google Scholar]
  • Fisher AG, Ensoli B, Ivanoff L, Chamberlain M, Petteway S, Ratner L, Gallo RC, Wong-Staal F. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science. 1987 Aug 21;237(4817):888–893. [PubMed] [Google Scholar]
  • Wong-Staal F, Chanda PK, Ghrayeb J. Human immunodeficiency virus: the eighth gene. AIDS Res Hum Retroviruses. 1987 Spring;3(1):33–39. [PubMed] [Google Scholar]
  • Arya SK, Guo C, Josephs SF, Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science. 1985 Jul 5;229(4708):69–73. [PubMed] [Google Scholar]
  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 1986 Sep 12;46(6):807–817. [PubMed] [Google Scholar]
  • Luciw PA, Cheng-Mayer C, Levy JA. Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1434–1438. [PMC free article] [PubMed] [Google Scholar]
  • Gallo R, Wong-Staal F, Montagnier L, Haseltine WA, Yoshida M. HIV/HTLV gene nomenclature. Nature. 1988 Jun 9;333(6173):504–504. [PubMed] [Google Scholar]
  • Sadaie MR, Benter T, Wong-Staal F. Site-directed mutagenesis of two trans-regulatory genes (tat-III,trs) of HIV-1. Science. 1988 Feb 19;239(4842):910–913. [PubMed] [Google Scholar]
  • Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W. A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature. 1986 May 22;321(6068):412–417. [PubMed] [Google Scholar]
  • Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature. 320(6060):367–371. [PubMed] [Google Scholar]
  • Zoller MJ, Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA. 1984 Dec;3(6):479–488. [PubMed] [Google Scholar]
  • Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350–5354. [PMC free article] [PubMed] [Google Scholar]
  • Mathews MB, Reichlin M, Hughes GR, Bernstein RM. Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J Exp Med. 1984 Aug 1;160(2):420–434. [PMC free article] [PubMed] [Google Scholar]
  • Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. [PMC free article] [PubMed] [Google Scholar]
  • Knight DM, Flomerfelt FA, Ghrayeb J. Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Science. 1987 May 15;236(4803):837–840. [PubMed] [Google Scholar]
  • Mount SM. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. [PMC free article] [PubMed] [Google Scholar]
  • Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. [PMC free article] [PubMed] [Google Scholar]
  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. [PMC free article] [PubMed] [Google Scholar]
  • Muesing MA, Smith DH, Cabradilla CD, Benton CV, Lasky LA, Capon DJ. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature. 1985 Feb 7;313(6002):450–458. [PubMed] [Google Scholar]
  • Patarca R, Haseltine WA. Examination of HTLV-III. AIDS Res Hum Retroviruses. 1987 Spring;3(1):1–2. [PubMed] [Google Scholar]
  • Frankel AD, Bredt DS, Pabo CO. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science. 1988 Apr 1;240(4848):70–73. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

-