Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Nucleic Acids Res. 1991 Oct 11; 19(19): 5345–5350.
PMCID: PMC328897
PMID: 1923818

Sequence conservation in the Saccharomyces and Kluveromyces GAL11 transcription activators suggests functional domains.

Abstract

Efficient transcription of many Saccharomyces cerevisiae genes requires the GAL11 Protein. GAL11 belongs to a class of transcription activator that lacks a DNA-binding domain. Such proteins are thought to activate specific genes by complexing with DNA-bound proteins. To begin to understand the domain structure-function relationships of GAL11 we cloned and sequenced a homologue from the yeast Kluyveromyces lactis, Kl-GAL11. The two predicted GAL11 proteins show high overall amino acid conservation and an unusual amino acid composition including 18% glutamine, 10% asparagine (S. cerevisiae) or 7% (K. lactis), and 8% proline (K. lactis) or 5% (S. cerevisiae) residues. Both proteins have runs of pure glutamines. Sc-GAL11 has glutamine-alanine runs but in Kl-GAL11 the alanines in such runs are replaced by proline and other residues. The primary sequence similarity is reflected in functional similarity since a gal11 mutation in K. lactis creates phenotypes similar to those seen previously in gal11-defective S. cerevisiae. In addition, Kl-GAL11 complements a gal11-defect in S. cerevisiae by partially restoring induction of GAL1 expression, growth on nonfermentable carbon sources, and phosphorylation of GAL4.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Salmeron JM, Jr, Leuther KK, Johnston SA. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein. Genetics. 1990 May;125(1):21–27. [PMC free article] [PubMed] [Google Scholar]
  • Dickson RC, Gerardot CJ, Martin AK. Genetic evidence for similar negative regulatory domains in the yeast transcription activators GAL4 and LAC9. Nucleic Acids Res. 1990 Sep 11;18(17):5213–5217. [PMC free article] [PubMed] [Google Scholar]
  • Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987 Mar 13;48(5):847–853. [PubMed] [Google Scholar]
  • Giniger E, Varnum SM, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell. 1985 Apr;40(4):767–774. [PubMed] [Google Scholar]
  • Bram RJ, Lue NF, Kornberg RD. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J. 1986 Mar;5(3):603–608. [PMC free article] [PubMed] [Google Scholar]
  • Torchia TE, Hamilton RW, Cano CL, Hopper JE. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol. 1984 Aug;4(8):1521–1527. [PMC free article] [PubMed] [Google Scholar]
  • Lue NF, Chasman DI, Buchman AR, Kornberg RD. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol. 1987 Oct;7(10):3446–3451. [PMC free article] [PubMed] [Google Scholar]
  • Giniger E, Ptashne M. Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature. 1987 Dec 17;330(6149):670–672. [PubMed] [Google Scholar]
  • Mylin LM, Bhat JP, Hopper JE. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 1989 Aug;3(8):1157–1165. [PubMed] [Google Scholar]
  • Mylin LM, Johnston M, Hopper JE. Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Mol Cell Biol. 1990 Sep;10(9):4623–4629. [PMC free article] [PubMed] [Google Scholar]
  • Long RM, Mylin LM, Hopper JE. GAL11 (SPT13), a transcriptional regulator of diverse yeast genes, affects the phosphorylation state of GAL4, a highly specific transcriptional activator. Mol Cell Biol. 1991 Apr;11(4):2311–2314. [PMC free article] [PubMed] [Google Scholar]
  • Wray LV, Jr, Witte MM, Dickson RC, Riley MI. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Mar;7(3):1111–1121. [PMC free article] [PubMed] [Google Scholar]
  • Riley MI, Hopper JE, Johnston SA, Dickson RC. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon. Mol Cell Biol. 1987 Feb;7(2):780–786. [PMC free article] [PubMed] [Google Scholar]
  • Post-Beittenmiller MA, Hamilton RW, Hopper JE. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jul;4(7):1238–1245. [PMC free article] [PubMed] [Google Scholar]
  • Ward AC. Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic Acids Res. 1990 Sep 11;18(17):5319–5319. [PMC free article] [PubMed] [Google Scholar]
  • Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. [PubMed] [Google Scholar]
  • Stark MJ, Milner JS. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast. 1989 Jan-Feb;5(1):35–50. [PubMed] [Google Scholar]
  • Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. [PubMed] [Google Scholar]
  • Lillie JW, Green MR. Transcription activation by the adenovirus E1a protein. Nature. 1989 Mar 2;338(6210):39–44. [PubMed] [Google Scholar]
  • Triezenberg SJ, Kingsbury RC, McKnight SL. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 1988 Jun;2(6):718–729. [PubMed] [Google Scholar]
  • Suzuki Y, Nogi Y, Abe A, Fukasawa T. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov;8(11):4991–4999. [PMC free article] [PubMed] [Google Scholar]
  • Olesen JT, Guarente L. The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev. 1990 Oct;4(10):1714–1729. [PubMed] [Google Scholar]
  • Fassler JS, Winston F. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics. 1988 Feb;118(2):203–212. [PMC free article] [PubMed] [Google Scholar]
  • Fassler JS, Winston F. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol Cell Biol. 1989 Dec;9(12):5602–5609. [PMC free article] [PubMed] [Google Scholar]
  • Nishizawa M, Suzuki Y, Nogi Y, Matsumoto K, Fukasawa T. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/activator site binding protein 1/translation upstream factor. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5373–5377. [PMC free article] [PubMed] [Google Scholar]
  • Himmelfarb HJ, Pearlberg J, Last DH, Ptashne M. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell. 1990 Dec 21;63(6):1299–1309. [PubMed] [Google Scholar]
  • Hopper JE, Broach JR, Rowe LB. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2878–2882. [PMC free article] [PubMed] [Google Scholar]
  • Keegan L, Gill G, Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science. 1986 Feb 14;231(4739):699–704. [PubMed] [Google Scholar]
  • Salmeron JM, Jr, Johnston SA. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. Nucleic Acids Res. 1986 Oct 10;14(19):7767–7781. [PMC free article] [PubMed] [Google Scholar]
  • Johnston M. Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature. 1987 Jul 23;328(6128):353–355. [PubMed] [Google Scholar]
  • Pan T, Coleman JE. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077–2081. [PMC free article] [PubMed] [Google Scholar]
  • Ma J, Ptashne M. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell. 1987 Jul 3;50(1):137–142. [PubMed] [Google Scholar]
  • Johnston SA, Salmeron JM, Jr, Dincher SS. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell. 1987 Jul 3;50(1):143–146. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

-