Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Mol Cell Biol. 1993 Sep; 13(9): 5383–5392.
PMCID: PMC360242
PMID: 8395003

Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells.

Abstract

L1, or LINE-1, is a repetitive DNA family found in all mammalian genomes that have been examined. At least a few individual members of the L1 family are functional transposable elements. Expression of these active elements leads to new insertions of L1 into the genomic DNA by the process of retrotransposition. We have detected coexpression of full-length, sense-strand L1 RNA transcripts and L1-encoded protein in mouse embryonal carcinoma cell lines. Both of these L1 expression products are candidates for intermediates in the retrotransposition process. L1 protein is found in what appear to be cytoplasmic aggregates and is not localized to any known cytoplasmic organelles. The six embryonal carcinoma cell lines tested were chosen to represent commitment to different developmental pathways in early mouse embryogenesis. The only two cell lines that express L1 are unique among the six in that they have a strong predilection to differentiate into extraembryonic endoderm. This observation is consistent with L1 expression and transposition in primordial germ cells of the mouse. An important implication of these studies is that L1 expression may provide a new marker for use in determining the origin of primordial germ cells during mouse embryogenesis.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Packer AI, Manova K, Bachvarova RF. A discrete LINE-1 transcript in mouse blastocysts. Dev Biol. 1993 May;157(1):281–283. [PubMed] [Google Scholar]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed] [Google Scholar]
  • Darmon M, Bottenstein J, Sato G. Neural differentiation following culture of embryonal carcinoma cells in a serum-free defined medium. Dev Biol. 1981 Jul 30;85(2):463–473. [PubMed] [Google Scholar]
  • Deragon JM, Sinnett D, Labuda D. Reverse transcriptase activity from human embryonal carcinoma cells NTera2D1. EMBO J. 1990 Oct;9(10):3363–3368. [PMC free article] [PubMed] [Google Scholar]
  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH., Jr Isolation of an active human transposable element. Science. 1991 Dec 20;254(5039):1805–1808. [PubMed] [Google Scholar]
  • Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. [PubMed] [Google Scholar]
  • Dudley JP. Discrete high molecular weight RNA transcribed from the long interspersed repetitive element L1Md. Nucleic Acids Res. 1987 Mar 25;15(6):2581–2592. [PMC free article] [PubMed] [Google Scholar]
  • Evans JP, Palmiter RD. Retrotransposition of a mouse L1 element. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8792–8795. [PMC free article] [PubMed] [Google Scholar]
  • Freedman R. Protein chemistry. Folding into the right shape. Nature. 1987 Sep 17;329(6136):196–197. [PubMed] [Google Scholar]
  • Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990 Oct;110(2):521–528. [PubMed] [Google Scholar]
  • Griffiths G, Simons K, Warren G, Tokuyasu KT. Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 1983;96:466–485. [PubMed] [Google Scholar]
  • Gunning P, Ponte P, Okayama H, Engel J, Blau H, Kedes L. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol. 1983 May;3(5):787–795. [PMC free article] [PubMed] [Google Scholar]
  • Hardies SC, Martin SL, Voliva CF, Hutchison CA, 3rd, Edgell MH. An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol Biol Evol. 1986 Mar;3(2):109–125. [PubMed] [Google Scholar]
  • Ilves H, Kahre O, Speek M. Translation of the rat LINE bicistronic RNAs in vitro involves ribosomal reinitiation instead of frameshifting. Mol Cell Biol. 1992 Sep;12(9):4242–4248. [PMC free article] [PubMed] [Google Scholar]
  • Jubier-Maurin V, Dod BJ, Bellis M, Piechaczyk M, Roizes G. Comparative study of the L1 family in the genus Mus. Possible role of retroposition and conversion events in its concerted evolution. J Mol Biol. 1985 Aug 20;184(4):547–564. [PubMed] [Google Scholar]
  • Kazazian HH, Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988 Mar 10;332(6160):164–166. [PubMed] [Google Scholar]
  • Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. [PubMed] [Google Scholar]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed] [Google Scholar]
  • Leibold DM, Swergold GD, Singer MF, Thayer RE, Dombroski BA, Fanning TG. Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6990–6994. [PMC free article] [PubMed] [Google Scholar]
  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA., 3rd The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 1986 Jan;6(1):168–182. [PMC free article] [PubMed] [Google Scholar]
  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. [PubMed] [Google Scholar]
  • Luzio JP, Brake B, Banting G, Howell KE, Braghetta P, Stanley KK. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J. 1990 Aug 15;270(1):97–102. [PMC free article] [PubMed] [Google Scholar]
  • Martin SL. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol. 1991 Sep;11(9):4804–4807. [PMC free article] [PubMed] [Google Scholar]
  • Martin SL. LINEs. Curr Opin Genet Dev. 1991 Dec;1(4):505–508. [PubMed] [Google Scholar]
  • Martin SL, Voliva CF, Burton FH, Edgell MH, Hutchison CA., 3rd A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2308–2312. [PMC free article] [PubMed] [Google Scholar]
  • Martin SL, Voliva CF, Hardies SC, Edgell MH, Hutchison CA., 3rd Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol. 1985 Mar;2(2):127–140. [PubMed] [Google Scholar]
  • Mathias SL, Scott AF, Kazazian HH, Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991 Dec 20;254(5039):1808–1810. [PubMed] [Google Scholar]
  • Nagai K, Thøgersen HC. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. [PubMed] [Google Scholar]
  • Nicolas JF, Avner P, Gaillard J, Guenet JL, Jakob H, Jacob F. Cell lines derived from teratocarcinomas. Cancer Res. 1976 Nov;36(11 Pt 2):4224–4231. [PubMed] [Google Scholar]
  • Parchment RE, Gramzinski RA, Pierce GB. Neoplastic embryoid bodies of embryonal carcinoma C44 as a source of blastocele-like fluid. Differentiation. 1990 Mar;43(1):51–58. [PubMed] [Google Scholar]
  • Pierce GB, Arechaga J, Jones A, Lewellyn A, Wells RS. The fate of embryonal-carcinoma cells in mouse blastocysts. Differentiation. 1987;33(3):247–253. [PubMed] [Google Scholar]
  • Pruitt SC, Natoli TA. Inhibition of differentiation by leukemia inhibitory factor distinguishes two induction pathways in P19 embryonal carcinoma cells. Differentiation. 1992 May;50(1):57–65. [PubMed] [Google Scholar]
  • Schichman SA, Severynse DM, Edgell MH, Hutchison CA., 3rd Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. J Mol Biol. 1992 Apr 5;224(3):559–574. [PubMed] [Google Scholar]
  • Segal-Bendirdjian E, Heidmann T. Evidence for a reverse transcription intermediate for a marked line transposon in tumoral rat cells. Biochem Biophys Res Commun. 1991 Dec 16;181(2):863–870. [PubMed] [Google Scholar]
  • Shehee WR, Chao SF, Loeb DD, Comer MB, Hutchison CA, 3rd, Edgell MH. Determination of a functional ancestral sequence and definition of the 5' end of A-type mouse L1 elements. J Mol Biol. 1987 Aug 20;196(4):757–767. [PubMed] [Google Scholar]
  • Skowronski J, Fanning TG, Singer MF. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol. 1988 Apr;8(4):1385–1397. [PMC free article] [PubMed] [Google Scholar]
  • Skowronski J, Singer MF. Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6050–6054. [PMC free article] [PubMed] [Google Scholar]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [PubMed] [Google Scholar]
  • Tooze J, Kern HF, Fuller SD, Howell KE. Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol. 1989 Jul;109(1):35–50. [PMC free article] [PubMed] [Google Scholar]
  • Wahl GM, Stern M, Stark GR. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. [PMC free article] [PubMed] [Google Scholar]
  • Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

-