Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Mol Cell Biol. 1987 Jul; 7(7): 2329–2334.
PMCID: PMC365363
PMID: 3302673

Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae.

Abstract

Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Bianchi ME, Radding CM. Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell. 1983 Dec;35(2 Pt 1):511–520. [PubMed] [Google Scholar]
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed] [Google Scholar]
  • Broach JR. Construction of high copy yeast vectors using 2-microns circle sequences. Methods Enzymol. 1983;101:307–325. [PubMed] [Google Scholar]
  • Cox MM, Lehman IR. recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3433–3437. [PMC free article] [PubMed] [Google Scholar]
  • Fogel S, Mortimer RK. Recombination in yeast. Annu Rev Genet. 1971;5:219–236. [PubMed] [Google Scholar]
  • FOX MS, ALLEN MK. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. [PMC free article] [PubMed] [Google Scholar]
  • Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. [PMC free article] [PubMed] [Google Scholar]
  • Holliday R. Molecular aspects of genetic exchange and gene conversion. Genetics. 1974 Sep;78(1):273–287. [PMC free article] [PubMed] [Google Scholar]
  • Jinks-Robertson S, Petes TD. High-frequency meiotic gene conversion between repeated genes on nonhomologous chromosomes in yeast. Proc Natl Acad Sci U S A. 1985 May;82(10):3350–3354. [PMC free article] [PubMed] [Google Scholar]
  • Kmiec E, Holloman WK. Homologous pairing of DNA molecules promoted by a protein from Ustilago. Cell. 1982 Jun;29(2):367–374. [PubMed] [Google Scholar]
  • Kunz BA, Haynes RH. Phenomenology and genetic control of mitotic recombination in yeast. Annu Rev Genet. 1981;15:57–89. [PubMed] [Google Scholar]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed] [Google Scholar]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed] [Google Scholar]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PMC free article] [PubMed] [Google Scholar]
  • Rauth S, Song KY, Ayares D, Wallace L, Moore PD, Kucherlapati R. Transfection and homologous recombination involving single-stranded DNA substrates in mammalian cells and nuclear extracts. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5587–5591. [PMC free article] [PubMed] [Google Scholar]
  • Rose M, Grisafi P, Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. [PubMed] [Google Scholar]
  • Rose M, Winston F. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol Gen Genet. 1984;193(3):557–560. [PubMed] [Google Scholar]
  • Singh H, Bieker JJ, Dumas LB. Genetic transformation of Saccharomyces cerevisiae with single-stranded circular DNA vectors. Gene. 1982 Dec;20(3):441–449. [PubMed] [Google Scholar]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed] [Google Scholar]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed] [Google Scholar]
  • Tschumper G, Carbon J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene. 1980 Jul;10(2):157–166. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

-