Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Mol Cell Biol. 1985 Apr; 5(4): 610–618.
PMCID: PMC366761
PMID: 3887134

Expression of the Escherichia coli dam methylase in Saccharomyces cerevisiae: effect of in vivo adenine methylation on genetic recombination and mutation.

Abstract

The Escherichia coli DNA adenine methylase (dam) gene has been introduced into Saccharomyces cerevisiae on a yeast-E. coli shuttle vector. Sau3AI, MboI, and DpnI restriction enzyme digests and Southern hybridization analysis indicated that the dam gene is expressed in yeast cells and methylates GATC sequences. Analysis of digests of total genomic DNA indicated that some GATC sites are not sensitive to methylation. The failure to methylate may reflect an inaccessibility to the methylase due to chromosome structure. The effects of this in vivo methylation on the processes of recombination and mutation in mitotic cells were determined. A small but definite general increase was found in the frequency of mitotic recombination. A similar increase was observed for reversion of some auxotrophic markers; other markers demonstrated a small decrease in mutation frequency. The effects on mutation appear to be locus (or allele) specific. Recombination in meiotic cells was measured and was not detectably altered by the presence of 6-methyladenine in GATC sequences.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Bale A, d'Alarcao M, Marinus MG. Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat Res. 1979 Feb;59(2):157–165. [PubMed] [Google Scholar]
  • Brooks JE, Blumenthal RM, Gingeras TR. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene. Nucleic Acids Res. 1983 Feb 11;11(3):837–851. [PMC free article] [PubMed] [Google Scholar]
  • Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124. [PubMed] [Google Scholar]
  • Esposito MS, Esposito RE. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics. 1969 Jan;61(1):79–89. [PMC free article] [PubMed] [Google Scholar]
  • Fehér Z, Kiss A, Venetianer P. Expression of a bacterial modification methylase gene in yeast. Nature. 1983 Mar 17;302(5905):266–268. [PubMed] [Google Scholar]
  • Fogel S, Mortimer R, Lusnak K, Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. [PubMed] [Google Scholar]
  • Gafner J, Robertis EM, Philippsen P. Delta sequences in the 5' non-coding region of yeast tRNA genes. EMBO J. 1983;2(4):583–591. [PMC free article] [PubMed] [Google Scholar]
  • Gelinas RE, Myers PA, Roberts RJ. Two sequence-specific endonucleases from Moraxella bovis. J Mol Biol. 1977 Jul;114(1):169–179. [PubMed] [Google Scholar]
  • Glickman B, van den Elsen P, Radman M. Induced mutagenesis in dam- mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol Gen Genet. 1978 Jul 25;163(3):307–312. [PubMed] [Google Scholar]
  • Golin JE, Esposito MS. Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces. Mol Gen Genet. 1977 Jan 18;150(2):127–135. [PubMed] [Google Scholar]
  • Geier GE, Modrich P. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem. 1979 Feb 25;254(4):1408–1413. [PubMed] [Google Scholar]
  • Hanawalt PC, Cooper PK, Ganesan AK, Smith CA. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836. [PubMed] [Google Scholar]
  • Hattman S, Kenny C, Berger L, Pratt K. Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol. 1978 Sep;135(3):1156–1157. [PMC free article] [PubMed] [Google Scholar]
  • Herman GE, Modrich P. Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J Bacteriol. 1981 Jan;145(1):644–646. [PMC free article] [PubMed] [Google Scholar]
  • Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. [PMC free article] [PubMed] [Google Scholar]
  • Lacks S, Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J Biol Chem. 1975 Jun 10;250(11):4060–4066. [PubMed] [Google Scholar]
  • Lacks S, Greenberg B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol. 1977 Jul;114(1):153–168. [PubMed] [Google Scholar]
  • Ma C, Mortimer RK. Empirical equation that can be used to determine genetic map distances from tetrad data. Mol Cell Biol. 1983 Oct;3(10):1886–1887. [PMC free article] [PubMed] [Google Scholar]
  • Malone RE, Hoekstra MF. Relationships between a hyper-rec mutation (REM1) and other recombination and repair genes in yeast. Genetics. 1984 May;107(1):33–48. [PMC free article] [PubMed] [Google Scholar]
  • Marinus MG, Konrad EB. Hyper-recombination in dam mutants of Escherichia coli K-12. Mol Gen Genet. 1976 Dec 22;149(3):273–277. [PubMed] [Google Scholar]
  • Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):1143–1150. [PMC free article] [PubMed] [Google Scholar]
  • Marinus MG, Morris NR. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res. 1975 Apr;28(1):15–26. [PubMed] [Google Scholar]
  • Mortimer RK, Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. [PMC free article] [PubMed] [Google Scholar]
  • Perkins DD. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. [PMC free article] [PubMed] [Google Scholar]
  • Proffitt JH, Davie JR, Swinton D, Hattman S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984 May;4(5):985–988. [PMC free article] [PubMed] [Google Scholar]
  • Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983 Aug;104(4):571–582. [PMC free article] [PubMed] [Google Scholar]
  • Ratzkin B, Carbon J. Functional expression of cloned yeast DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1977 Feb;74(2):487–491. [PMC free article] [PubMed] [Google Scholar]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed] [Google Scholar]
  • Streeck RE. Single-strand and double-strand cleavage at half-modified and fully modified recognition sites for the restriction nucleases Sau3a and Taqi. Gene. 1980 Dec;12(3-4):267–275. [PubMed] [Google Scholar]
  • Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. [PMC free article] [PubMed] [Google Scholar]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed] [Google Scholar]
  • Tschumper G, Carbon J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene. 1980 Jul;10(2):157–166. [PubMed] [Google Scholar]
  • Wagner R, Jr, Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4135–4139. [PMC free article] [PubMed] [Google Scholar]
  • Wahl GM, Stern M, Stark GR. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

-