Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Microbiol Rev. 1987 Sep; 51(3): 365–379.
PMCID: PMC373117
PMID: 3312987

Survival strategies of bacteria in the natural environment.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Anderson JI, Heffernan WP. Isolation and characterization of filterable marine bacteria. J Bacteriol. 1965 Dec;90(6):1713–1718. [PMC free article] [PubMed] [Google Scholar]
  • Bae HC, Cota-Robles EH, Casida LE. Microflora of soil as viewed by transmission electron microscopy. Appl Microbiol. 1972 Mar;23(3):637–648. [PMC free article] [PubMed] [Google Scholar]
  • Baker RM, Singleton FL, Hood MA. Effects of nutrient deprivation on Vibrio cholerae. Appl Environ Microbiol. 1983 Oct;46(4):930–940. [PMC free article] [PubMed] [Google Scholar]
  • BARER R, ROSS KFA, TKACZYK S. Refractometry of living cells. Nature. 1953 Apr 25;171(4356):720–724. [PubMed] [Google Scholar]
  • Bowden WB. Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl Environ Microbiol. 1977 May;33(5):1229–1232. [PMC free article] [PubMed] [Google Scholar]
  • Ensign JC. Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes. J Bacteriol. 1970 Sep;103(3):569–577. [PMC free article] [PubMed] [Google Scholar]
  • Boylen CW, Ensign JC. Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. J Bacteriol. 1970 Sep;103(3):578–587. [PMC free article] [PubMed] [Google Scholar]
  • BRETZ HW. Simple method for estimating slide culture survival. J Bacteriol. 1962 Nov;84:1115–1116. [PMC free article] [PubMed] [Google Scholar]
  • Brock TD, Brock ML. Autoradiography as a tool in microbial ecology. Nature. 1966 Feb 12;209(5024):734–736. [PubMed] [Google Scholar]
  • Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. Swimming-associated gastroenteritis and water quality. Am J Epidemiol. 1982 Apr;115(4):606–616. [PubMed] [Google Scholar]
  • Calcott PH, Postgate JR. On substrate-accelerated death in Klebsiella aerogenes. J Gen Microbiol. 1972 Apr;70(1):115–122. [PubMed] [Google Scholar]
  • Casida LE., Jr Microorganisms in unamended soil as observed by various forms of microscopy and staining. Appl Microbiol. 1971 Jun;21(6):1040–1045. [PMC free article] [PubMed] [Google Scholar]
  • CASIDA LE., Jr ABUNDANT MICROORGANISM IN SOIL. Appl Microbiol. 1965 May;13:327–334. [PMC free article] [PubMed] [Google Scholar]
  • Conn HJ. THE MOST ABUNDANT GROUPS OF BACTERIA IN SOIL. Bacteriol Rev. 1948 Sep;12(3):257–273. [PMC free article] [PubMed] [Google Scholar]
  • DAWES EA, RIBBONS DW. STUDIES ON THE ENDOGENOUS METABOLISM OF ESCHERICHIA COLI. Biochem J. 1965 May;95:332–343. [PMC free article] [PubMed] [Google Scholar]
  • Dawes EA, Senior PJ. The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol. 1973;10:135–266. [PubMed] [Google Scholar]
  • Deitz WH, Cook TM, Goss WA. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality. J Bacteriol. 1966 Feb;91(2):768–773. [PMC free article] [PubMed] [Google Scholar]
  • DELPY LP, BERANGER G, KAWEH M. Méthode de numération des bactéries vivantes. Ann Inst Pasteur (Paris) 1956 Jul;91(1):112–114. [PubMed] [Google Scholar]
  • Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev. 1984 Dec;48(4):273–289. [PMC free article] [PubMed] [Google Scholar]
  • Dutton RJ, Bitton G, Koopman B. Malachite green-INT (MINT) method for determining active bacteria in sewage. Appl Environ Microbiol. 1983 Dec;46(6):1263–1267. [PMC free article] [PubMed] [Google Scholar]
  • Felter RA, Colwell RR, Chapman GB. Morphology and round body fermation in Vibrio marinus. J Bacteriol. 1969 Jul;99(1):326–335. [PMC free article] [PubMed] [Google Scholar]
  • Felter RA, Kennedy SF, Colwell RR, Chapman GB. Intracytoplasmic membrane structures in Vibrio marinus. J Bacteriol. 1970 May;102(2):552–560. [PMC free article] [PubMed] [Google Scholar]
  • Fliermans CB, Schmidt EL. Autoradiography and immunofluorescence combined for autecological study of single cell activity with Nitrobacter as a model system. Appl Microbiol. 1975 Oct;30(4):676–684. [PMC free article] [PubMed] [Google Scholar]
  • Francisco DE, Mah RA, Rabin AC. Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans Am Microsc Soc. 1973 Jul;92(3):416–421. [PubMed] [Google Scholar]
  • GOSS WA, DEITZ WH, COOK TM. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI. J Bacteriol. 1964 Oct;88:1112–1118. [PMC free article] [PubMed] [Google Scholar]
  • Griffiths RP, Haight RD. Reversible heat injury in the marine psychrophilic bacterium Vibrio marinus MP-1. Can J Microbiol. 1973 May;19(5):557–561. [PubMed] [Google Scholar]
  • Grimes DJ, Singleton FL, Colwell RR. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J Appl Bacteriol. 1984 Oct;57(2):247–261. [PubMed] [Google Scholar]
  • Guelin AM, Mishustina IE, Andreev LV, Bobyk MA, Lambina VA. Some problems of the ecology and taxonomy of marine microvibrios. Biol Bull Acad Sci USSR. 1978 May-Jun;5(3):336–340. [PubMed] [Google Scholar]
  • Harder W, Dijkhuizen L. Physiological responses to nutrient limitation. Annu Rev Microbiol. 1983;37:1–23. [PubMed] [Google Scholar]
  • HARRIS NK, POWELL EO. A culture chamber for the microscopical study of living bacteria with some observations on the spore-bearing aerobes. J R Microsc Soc. 1951;71(4):407–420. [PubMed] [Google Scholar]
  • HARRISON AP, Jr, LAWRENCE FR. PHENOTYPIC, GENOTYPIC, AND CHEMICAL CHANGES IN STARVING POPULATIONS OF AEROBACTER AEROGENES. J Bacteriol. 1963 Apr;85:742–750. [PMC free article] [PubMed] [Google Scholar]
  • Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. [PMC free article] [PubMed] [Google Scholar]
  • Hurst A. Bacterial injury: a review. Can J Microbiol. 1977 Aug;23(8):935–944. [PubMed] [Google Scholar]
  • JANNASCH HW. Studies on planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol. 1958 Jun;18(3):609–620. [PubMed] [Google Scholar]
  • Jannasch HW. Estimations of bacterial growth rates in natural waters. J Bacteriol. 1969 Jul;99(1):156–160. [PMC free article] [PubMed] [Google Scholar]
  • Jarnagin JL, Luchsinger DW. The use of fluorescein diacetate and ethidium bromide as a stain for evaluating viability of mycobacteria. Stain Technol. 1980 Jul;55(4):253–258. [PubMed] [Google Scholar]
  • JEBB WH, TOMLINSON AH. A microculture technique for observing the early growth of mycobacteria. J Gen Microbiol. 1960 Feb;22:93–101. [PubMed] [Google Scholar]
  • Jennison MW. The Relations Between Plate Counts and Direct Microscopic Counts of Escherichia coli During the Logarithmic Growth Period. J Bacteriol. 1937 May;33(5):461–477. [PMC free article] [PubMed] [Google Scholar]
  • Jones JG, Simon BM. An investigation of errors in direct counts of aquatic bacteria by epifluorescence microscopy, with reference to a new method for dyeing membrane filters. J Appl Bacteriol. 1975 Dec;39(3):317–329. [PubMed] [Google Scholar]
  • Kantor GJ, Deering RA. Effect of nalidixic acid and hydroxyurea on division ability of Escherichia coli fil+ and lon- strains. J Bacteriol. 1968 Feb;95(2):520–530. [PMC free article] [PubMed] [Google Scholar]
  • Kelly CD, Rahn O. The Growth Rate of Individual Bacterial Cells. J Bacteriol. 1932 Feb;23(2):147–153. [PMC free article] [PubMed] [Google Scholar]
  • Kennedy SF, Colwell RR, Chapman GB. Ultrastructure of a marine psychrophilic Vibrio. Can J Microbiol. 1970 Nov;16(11):1027–1031. [PubMed] [Google Scholar]
  • KJELDGAARD NO. The kinetics of ribonucleic acid- and protein formation in Salmonella typhimurium during the transition between different states of balance growth. Biochim Biophys Acta. 1961 Apr 29;49:64–76. [PubMed] [Google Scholar]
  • Kjelleberg S, Humphrey BA, Marshall KC. Effect of interfaces on small, starved marine bacteria. Appl Environ Microbiol. 1982 May;43(5):1166–1172. [PMC free article] [PubMed] [Google Scholar]
  • Kjelleberg S, Humphrey BA, Marshall KC. Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol. 1983 Nov;46(5):978–984. [PMC free article] [PubMed] [Google Scholar]
  • Knaysi G. A Microscopic Method of Distinguishing Dead from Living Bacterial Cells. J Bacteriol. 1935 Aug;30(2):193–206. [PMC free article] [PubMed] [Google Scholar]
  • KOCH AL. Death of bacteria in growing culture. J Bacteriol. 1959 May;77(5):623–629. [PMC free article] [PubMed] [Google Scholar]
  • Kogure K, Simidu U, Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979 Mar;25(3):415–420. [PubMed] [Google Scholar]
  • Kogure K, Simidu U, Taga N. Distribution of viable marine bacteria in neritic seawater around Japan. Can J Microbiol. 1980 Mar;26(3):318–323. [PubMed] [Google Scholar]
  • KOGUT M, LIGHTBOWN JW, ISAACSON P. EFFECTS OF DIHYDROSTREPTOMYCIN TREATMENT ON THE GROWTH OF ESCHERICHIA COLI AFTER REMOVAL OF EXTRACELLULAR ANTIBIOTIC. J Gen Microbiol. 1965 May;39:165–183. [PubMed] [Google Scholar]
  • Korgaonkar KS, Ranade SS. Evaluation of acridine orange fluorescence test in viability studies on Escherichia coli. Can J Microbiol. 1966 Feb;12(1):185–190. [PubMed] [Google Scholar]
  • Kurath G, Morita RY. Starvation-Survival Physiological Studies of a Marine Pseudomonas sp. Appl Environ Microbiol. 1983 Apr;45(4):1206–1211. [PMC free article] [PubMed] [Google Scholar]
  • Little JW, Mount DW. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. [PubMed] [Google Scholar]
  • Macdonell MT, Hood MA. Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl Environ Microbiol. 1982 Mar;43(3):566–571. [PMC free article] [PubMed] [Google Scholar]
  • MAGER J, KUCZYNSKI M, SCHATZBERG G, AVI-DOR Y. Turbidity changes in bacterial suspensions in relation to osmotic pressure. J Gen Microbiol. 1956 Feb;14(1):69–75. [PubMed] [Google Scholar]
  • Maki JS, Remsen CC. Comparison of two direct-count methods for determining metabolizing bacteria in freshwater. Appl Environ Microbiol. 1981 May;41(5):1132–1138. [PMC free article] [PubMed] [Google Scholar]
  • MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. [PMC free article] [PubMed] [Google Scholar]
  • Martin P, Macleod RA. Observations on the distinction between oligotrophic and eutrophic marine bacteria. Appl Environ Microbiol. 1984 May;47(5):1017–1022. [PMC free article] [PubMed] [Google Scholar]
  • Meyer-Reil LA. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural water. Appl Environ Microbiol. 1978 Sep;36(3):506–512. [PMC free article] [PubMed] [Google Scholar]
  • Montague MD, Dawes EA. The survival of Peptococcus prévotii in relation to the adenylate energy charge. J Gen Microbiol. 1974 Jan;80(1):291–299. [PubMed] [Google Scholar]
  • Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. [PMC free article] [PubMed] [Google Scholar]
  • Mossel DA, Van Netten P. Harmful effects of selective media on stressed micro-organisms: nature and remedies. Soc Appl Bacteriol Symp Ser. 1984;(12):329–369. [PubMed] [Google Scholar]
  • Munro AL, Brock TD. Distinction between bacterial and algal utilization of soluble substances in the sea. J Gen Microbiol. 1968 Apr;51(1):35–42. [PubMed] [Google Scholar]
  • Nelson LM, Parkinson D. Effect of starvation on survival of three bacterial isolates from an arctic soil. Can J Microbiol. 1978 Dec;24(12):1460–1467. [PubMed] [Google Scholar]
  • Novitsky JA, Morita RY. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol. 1976 Oct;32(4):617–622. [PMC free article] [PubMed] [Google Scholar]
  • Novitsky JA, Morita RY. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol. 1977 Mar;33(3):635–641. [PMC free article] [PubMed] [Google Scholar]
  • Olson BH. Enchanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Appl Environ Microbiol. 1978 Sep;36(3):438–444. [PMC free article] [PubMed] [Google Scholar]
  • PEARCE TW, POWELL EO. New techniques for the study of growing micro-organisms. J Gen Microbiol. 1951 Feb;5(1):91–103. [PubMed] [Google Scholar]
  • Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. [PubMed] [Google Scholar]
  • POSTGATE JR, CRUMPTON JE, HUNTER JR. The measurement of bacterial viabilities by slide culture. J Gen Microbiol. 1961 Jan;24:15–24. [PubMed] [Google Scholar]
  • POSTGATE JR, HUNTER JR. The survival of starved bacteria. J Gen Microbiol. 1962 Oct;29:233–263. [PubMed] [Google Scholar]
  • POSTGATE JR, HUNTER JR. ACCELERATED DEATH OF AEROBACTER AEROGENES STARVED IN THE PRESENCE OF GROWTH-LIMITING SUBSTRATES. J Gen Microbiol. 1964 Mar;34:459–473. [PubMed] [Google Scholar]
  • POWELL EO. A rapid method for determining the proportion of viable bacteria in a culture. J Gen Microbiol. 1956 Feb;14(1):153–159. [PubMed] [Google Scholar]
  • Ray B, Jezeski JJ, Busta FF. Repair of injury in freeze-dried Salmonella anatum. Appl Microbiol. 1971 Sep;22(3):401–407. [PMC free article] [PubMed] [Google Scholar]
  • Ray B, Speck ML. Repair of injury induced by freezing Escherichia coli as influenced by recovery medium. Appl Microbiol. 1972 Aug;24(2):258–263. [PMC free article] [PubMed] [Google Scholar]
  • Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985 Jan;49(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  • RIBBONS DW, DAWES EA. Environmental and growth conditions affecting the endogenous metabolism of bacteria. Ann N Y Acad Sci. 1963 Jan 21;102:564–586. [PubMed] [Google Scholar]
  • Roszak DB, Grimes DJ, Colwell RR. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol. 1984 Mar;30(3):334–338. [PubMed] [Google Scholar]
  • Sedar AW, Burde RM. The demonstration of the succinic dehydrogenase system in Bacillus subtilis using tetranitro--blue tetrazolium combined with techniques of electron microscopy. J Cell Biol. 1965 Oct;27(1):53–66. [PMC free article] [PubMed] [Google Scholar]
  • SKINNER FA, JONES PC, MOLLISON JE. A comparison of a direct- and a plate counting technique for the quantitative estimation of soil micro-organisms. J Gen Microbiol. 1952 May;6(3-4):261–271. [PubMed] [Google Scholar]
  • Singlas E, Simon P. L'apport de la pharmacocinétique pour expliquer des effets indésirables d'un médicament. A propos de la perhexiline. Therapie. 1981 May-Jun;36(3):285–288. [PubMed] [Google Scholar]
  • Spino DF. Characterization of dysgonic, heterotrophic bacteria from drinking water. Appl Environ Microbiol. 1985 Nov;50(5):1213–1218. [PMC free article] [PubMed] [Google Scholar]
  • Tabor PS, Neihof RA. Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters. Appl Environ Microbiol. 1982 Oct;44(4):945–953. [PMC free article] [PubMed] [Google Scholar]
  • Tabor PS, Neihof RA. Direct determination of activities for microorganisms of chesapeake bay populations. Appl Environ Microbiol. 1984 Nov;48(5):1012–1019. [PMC free article] [PubMed] [Google Scholar]
  • TAUBENECK U. New grid-replica for precise localization in slide cultures. J Bacteriol. 1959 Apr;77(4):506–508. [PMC free article] [PubMed] [Google Scholar]
  • Thomas TD, Batt RD. Metabolism of exogenous arginine and glucose by starved Streptococcus lactis in relation to survival. J Gen Microbiol. 1969 Nov;58(3):371–380. [PubMed] [Google Scholar]
  • Torrella F, Morita RY. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol. 1981 Feb;41(2):518–527. [PMC free article] [PubMed] [Google Scholar]
  • TUCKETT JD, MOORE WE. Production of filterable particles by Cellvibrio gilvus. J Bacteriol. 1959 Feb;77(2):227–229. [PMC free article] [PubMed] [Google Scholar]
  • VALENTINE RC, BRADFIELD JR. The urea method for bacterial viability counts with the electron microscope and its relation to other viability counting methods. J Gen Microbiol. 1954 Dec;11(3):349–357. [PubMed] [Google Scholar]
  • WADE HE, MORGAN DM. Differentiation of growing and non-growing bacteria by a staining technique. Nature. 1954 Nov 13;174(4437):920–921. [PubMed] [Google Scholar]
  • WEIBULL C. Observations on the staining of bacillus megaterium with triphenyltetrazolium. J Bacteriol. 1953 Aug;66(2):137–139. [PMC free article] [PubMed] [Google Scholar]
  • Zinsser H. PROBLEMS OF THE BACTERIOLOGIST IN HIS RELATIONS TO MEDICINE AND THE PUBLIC HEALTH. J Bacteriol. 1927 Mar;13(3):147–162. [PMC free article] [PubMed] [Google Scholar]
  • Winslow CE, Walker HH. THE EARLIER PHASES OF THE BACTERIAL CULTURE CYCLE. Bacteriol Rev. 1939 Dec;3(2):147–186. [PMC free article] [PubMed] [Google Scholar]
  • Wright RT. Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl Environ Microbiol. 1978 Aug;36(2):297–305. [PMC free article] [PubMed] [Google Scholar]
  • Zimmermann R, Iturriaga R, Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

-