Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
J Clin Invest. 1997 Dec 1; 100(11): 2816–2823.
PMCID: PMC508487
PMID: 9389747

Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole.

Abstract

Although angiotensin II type 2 (AT2) receptor has recently been cloned, its functional role is not well understood. We tested the hypothesis that selective activation of AT2 receptor causes vasodilation in the preglomerular afferent arteriole (Af-Art), a vascular segment that accounts for most of the preglomerular resistance. We microperfused rabbit Af-Arts at 60 mmHg in vitro, and examined the effect of angiotensin II (Ang II; 10(-11)-10(-8) M) on the luminal diameter in the presence or absence of the Ang II type 1 receptor antagonist CV11974 (CV; 10(-8) M). Ang II was added to both the bath and lumen of preconstricted Af-Arts. Ang II further constricted Af-Arts without CV (by 74+/-7% over the preconstricted level at 10(-8) M; P < 0.01, n = 7). In contrast, in the presence of CV, Ang II caused dose-dependent dilation; Ang II at 10(-8) M increased the diameter by 29+/-2% (n = 7, P < 0.01). This dilation was completely abolished by pretreatment with an AT2 receptor antagonist PD123319 (10(-7) M, n = 6), suggesting that activation of AT2 receptor causes vasodilation in Af-Arts. The dilation was unaffected by inhibiting either nitric oxide synthase (n = 7) or cyclooxygenase (n = 7), however, it was abolished by either disrupting the endothelium (n = 10) or inhibiting the cytochrome P-450 pathway, particularly the synthesis of epoxyeicosatrienoic acids (EETs, n = 7). These results suggest that in the Af-Art activation of the AT2 receptor may cause endothelium-dependent vasodilation via a cytochrome P-450 pathway, possibly by EETs.

Full Text

The Full Text of this article is available as a PDF (245K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Whitebread S, Mele M, Kamber B, de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):284–291. [PubMed] [Google Scholar]
  • Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, et al. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Nov 30;165(1):196–203. [PubMed] [Google Scholar]
  • Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993 Jun;45(2):205–251. [PubMed] [Google Scholar]
  • Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. [PubMed] [Google Scholar]
  • Munzenmaier DH, Greene AS. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension. 1996 Mar;27(3 Pt 2):760–765. [PubMed] [Google Scholar]
  • Itoh S, Carretero OA, Murray RD. Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest. 1985 Oct;76(4):1412–1417. [PMC free article] [PubMed] [Google Scholar]
  • Ito S, Carretero OA. An in vitro approach to the study of macula densa-mediated glomerular hemodynamics. Kidney Int. 1990 Dec;38(6):1206–1210. [PubMed] [Google Scholar]
  • Ito S, Johnson CS, Carretero OA. Modulation of angiotensin II-induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest. 1991 May;87(5):1656–1663. [PMC free article] [PubMed] [Google Scholar]
  • Arima S, Ito S, Omata K, Takeuchi K, Abe K. High glucose augments angiotensin II action by inhibiting NO synthesis in in vitro microperfused rabbit afferent arterioles. Kidney Int. 1995 Sep;48(3):683–689. [PubMed] [Google Scholar]
  • Shibouta Y, Inada Y, Ojima M, Wada T, Noda M, Sanada T, Kubo K, Kohara Y, Naka T, Nishikawa K. Pharmacological profile of a highly potent and long-acting angiotensin II receptor antagonist, 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4- yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV-11974), and its prodrug, (+/-)-1-(cyclohexyloxycarbonyloxy)-ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5- yl)biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylate (TCV-116). J Pharmacol Exp Ther. 1993 Jul;266(1):114–120. [PubMed] [Google Scholar]
  • Macari D, Bottari S, Whitebread S, De Gasparo M, Levens N. Renal actions of the selective angiotensin AT2 receptor ligands CGP 42112B and PD 123319 in the sodium-depleted rat. Eur J Pharmacol. 1993 Nov 2;249(1):85–93. [PubMed] [Google Scholar]
  • Brechler V, Jones PW, Levens NR, de Gasparo M, Bottari SP. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept. 1993 Mar 19;44(2):207–213. [PubMed] [Google Scholar]
  • Juncos LA, Garvin J, Carretero OA, Ito S. Flow modulates myogenic responses in isolated microperfused rabbit afferent arterioles via endothelium-derived nitric oxide. J Clin Invest. 1995 Jun;95(6):2741–2748. [PMC free article] [PubMed] [Google Scholar]
  • Juncos LA, Ren Y, Arima S, Garvin J, Carretero OA, Ito S. Angiotensin II action in isolated microperfused rabbit afferent arterioles is modulated by flow. Kidney Int. 1996 Feb;49(2):374–381. [PubMed] [Google Scholar]
  • Itoh S, Carretero OA. Role of the macula densa in renin release. Hypertension. 1985 May-Jun;7(3 Pt 2):I49–I54. [PubMed] [Google Scholar]
  • Zou AP, Imig JD, Kaldunski M, Ortiz de Montellano PR, Sui Z, Roman RJ. Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. Am J Physiol. 1994 Feb;266(2 Pt 2):F275–F282. [PubMed] [Google Scholar]
  • Oyekan AO, McGiff JC, Quilley J. Cytochrome P-450-dependent vasodilator responses to arachidonic acid in the isolated, perfused kidney of the rat. Circ Res. 1991 Apr;68(4):958–965. [PubMed] [Google Scholar]
  • Tsuzuki S, Matoba T, Eguchi S, Inagami T. Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension. 1996 Nov;28(5):916–918. [PubMed] [Google Scholar]
  • Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol. 1992 Aug;263(2 Pt 2):H519–H525. [PubMed] [Google Scholar]
  • Hu S, Kim HS. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur J Pharmacol. 1993 Jan 12;230(2):215–221. [PubMed] [Google Scholar]
  • Harder DR, Campbell WB, Roman RJ. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res. 1995 Mar-Apr;32(2):79–92. [PubMed] [Google Scholar]
  • Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR, Roman RJ. Coexistence of two types of Ca(2+)-activated K+ channels in rat renal arterioles. Am J Physiol. 1996 Jan;270(1 Pt 2):F69–F81. [PubMed] [Google Scholar]
  • Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am J Physiol. 1996 Jan;270(1 Pt 2):R228–R237. [PubMed] [Google Scholar]
  • Langton PD, Nelson MT, Huang Y, Standen NB. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am J Physiol. 1991 Mar;260(3 Pt 2):H927–H934. [PubMed] [Google Scholar]
  • Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. [PubMed] [Google Scholar]
  • Hayashi K, Suzuki H, Saruta T. Segmental differences in angiotensin receptor subtypes in interlobular artery of hydronephrotic rat kidneys. Am J Physiol. 1993 Dec;265(6 Pt 2):F881–F885. [PubMed] [Google Scholar]
  • Haberl RL, Anneser F, Villringer A, Einhäupl KM. Angiotensin II induces endothelium-dependent vasodilation of rat cerebral arterioles. Am J Physiol. 1990 Jun;258(6 Pt 2):H1840–H1846. [PubMed] [Google Scholar]
  • Haberl RL, Decker PJ, Einhäupl KM. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ Res. 1991 Jun;68(6):1621–1627. [PubMed] [Google Scholar]
  • Tsutsumi K, Saavedra JM. Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am J Physiol. 1991 Sep;261(3 Pt 2):H667–H670. [PubMed] [Google Scholar]
  • Boulanger CM, Caputo L, Lévy BI. Endothelial AT1-mediated release of nitric oxide decreases angiotensin II contractions in rat carotid artery. Hypertension. 1995 Nov;26(5):752–757. [PubMed] [Google Scholar]
  • Siragy HM, Carey RM. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest. 1996 Apr 15;97(8):1978–1982. [PMC free article] [PubMed] [Google Scholar]
  • Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int. 1992 Oct;42(4):1017–1019. [PubMed] [Google Scholar]
  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. [PMC free article] [PubMed] [Google Scholar]
  • Tojo A, Madsen KM, Wilcox CS. Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J. 1995 May;36(3):389–398. [PubMed] [Google Scholar]
  • Singh I, Grams M, Wang WH, Yang T, Killen P, Smart A, Schnermann J, Briggs JP. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol. 1996 Jun;270(6 Pt 2):F1027–F1037. [PubMed] [Google Scholar]
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  • Ito S, Arima S, Ren YL, Juncos LA, Carretero OA. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest. 1993 May;91(5):2012–2019. [PMC free article] [PubMed] [Google Scholar]
  • Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest. 1995 Feb;95(2):651–657. [PMC free article] [PubMed] [Google Scholar]
  • Siragy HM, Howell NL, Ragsdale NV, Carey RM. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995 May;25(5):1021–1024. [PubMed] [Google Scholar]
  • McGiff JC. Cytochrome P-450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol. 1991;31:339–369. [PubMed] [Google Scholar]
  • Zou AP, Imig JD, Ortiz de Montellano PR, Sui Z, Falck JR, Roman RJ. Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am J Physiol. 1994 Jun;266(6 Pt 2):F934–F941. [PubMed] [Google Scholar]
  • Imig JD, Zou AP, Ortiz de Montellano PR, Sui Z, Roman RJ. Cytochrome P-450 inhibitors alter afferent arteriolar responses to elevations in pressure. Am J Physiol. 1994 May;266(5 Pt 2):H1879–H1885. [PubMed] [Google Scholar]
  • Arima S, Omata K, Ito S, Tsunoda K, Abe K. 20-HETE requires increased vascular tone to constrict rabbit afferent arterioles. Hypertension. 1996 Mar;27(3 Pt 2):781–785. [PubMed] [Google Scholar]
  • Escalante B, Erlij D, Falck JR, McGiff JC. Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science. 1991 Feb 15;251(4995):799–802. [PubMed] [Google Scholar]
  • Sacerdoti D, Escalante B, Abraham NG, McGiff JC, Levere RD, Schwartzman ML. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science. 1989 Jan 20;243(4889):388–390. [PubMed] [Google Scholar]
  • Carroll MA, Schwartzman M, Baba M, Miller MJ, McGiff JC. Renal cytochrome P-450-related arachidonate metabolism in rabbit aortic coarctation. Am J Physiol. 1988 Jul;255(1 Pt 2):F151–F157. [PubMed] [Google Scholar]
  • Hecker M, Bara AT, Bauersachs J, Busse R. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol. 1994 Dec 1;481(Pt 2):407–414. [PMC free article] [PubMed] [Google Scholar]
  • Fulton D, Mahboubi K, McGiff JC, Quilley J. Cytochrome P450-dependent effects of bradykinin in the rat heart. Br J Pharmacol. 1995 Jan;114(1):99–102. [PMC free article] [PubMed] [Google Scholar]
  • Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996 Mar;78(3):415–423. [PubMed] [Google Scholar]
  • Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K(+)-channel activity. Am J Physiol. 1996 May;270(5 Pt 2):F822–F832. [PubMed] [Google Scholar]
  • Omata K, Abraham NG, Schwartzman ML. Renal cytochrome P-450-arachidonic acid metabolism: localization and hormonal regulation in SHR. Am J Physiol. 1992 Apr;262(4 Pt 2):F591–F599. [PubMed] [Google Scholar]
  • Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991 Aug;88(2):456–461. [PMC free article] [PubMed] [Google Scholar]
  • Schwartzman ML, Abraham NG, Carroll MA, Levere RD, McGiff JC. Regulation of arachidonic acid metabolism by cytochrome P-450 in rabbit kidney. Biochem J. 1986 Aug 15;238(1):283–290. [PMC free article] [PubMed] [Google Scholar]
  • Carroll MA, Garcia MP, Falck JR, McGiff JC. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. J Pharmacol Exp Ther. 1992 Jan;260(1):104–109. [PubMed] [Google Scholar]
  • Lo M, Liu KL, Lantelme P, Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest. 1995 Mar;95(3):1394–1397. [PMC free article] [PubMed] [Google Scholar]
  • Jacobs LS, Douglas JG. Angiotensin II type 2 receptor subtype mediates phospholipase A2-dependent signaling in rabbit proximal tubular epithelial cells. Hypertension. 1996 Oct;28(4):663–668. [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

-