Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
J Anesth. 2005; 19(3): 236–242.
PMCID: PMC7102071
PMID: 16032452

Heat shock protein 70 and the acute respiratory distress syndrome

The Full Text of this article is available as a PDF (129K).

References

1. Milberg JA, Davis DR, Steinberg KP, Hudson LD. Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA. 1995;273:306–309. [PubMed] [Google Scholar]
2. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (MODS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock. 1998;10:79–89. [PubMed] [Google Scholar]
3. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–1349. [PubMed] [Google Scholar]
4. The Acute Respiratory Distress Syndrome Network Investigators Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. [PubMed] [Google Scholar]
5. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336. [PubMed] [Google Scholar]
6. Simon RH, Pain R., III Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med. 1995;126:108–118. [PubMed] [Google Scholar]
7. Smart SJ, Casale TB. Pulmonary epithelial cells facilitate TNF induced neutrophil chemotaxis: a role for cytokine networking. J Immunol. 1994;152:4087–4094. [PubMed] [Google Scholar]
8. Tosi MF, Stark JM, Hamedani A, Smith CW, Gruenert DC, Huang YT. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol. 1992;7:214–221. [PubMed] [Google Scholar]
9. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest. 1997;99:1767–1773. [PMC free article] [PubMed] [Google Scholar]
10. Lewis JF, Jobe AH. State of the art: surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis. 1993;147:218–233. [PubMed] [Google Scholar]
11. Baker CS, Evans TW, Randle BJ, Haslam PL. Damage to surfactant-specific proteins in acute respiratory distress syndrome. Lancet. 1999;353:1232–1237. [PubMed] [Google Scholar]
12. Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whitsett JA, Akino T, Kuroki Y, Nagae H, Hudson LD, Martin TR. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999;160:1843–1850. [PubMed] [Google Scholar]
13. De Maio A. Heat shock proteins: facts, thoughts and dreams. Shock. 1999;11:1–12. [PubMed] [Google Scholar]
14. Bellmann K, Wenz A, Radons J, Burkart V, Kleemann R, Kolb H. Heat shock induces resistance in rat pancreatic iselt cells against nitric oxide, oxygen radicals and sreptozotonic toxicity in vitro. J Clin Invest. 1995;95:2840–2845. [PMC free article] [PubMed] [Google Scholar]
15. Klosterhalfen B, Hauptmann S, Tietze L, Tons C, Winkeltau G, Kupper W, Kirkpatrick CJ. The influence of heat shock protein 70 induction on hemodynamic variables in a porcine model of recurrent endotoxemia. Shock. 1997;7:358–363. [PubMed] [Google Scholar]
16. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kd stress protein in a transgenic mouse increase the resistance of the heart to ischemic injury. J Clin Invest. 1995;95:1446–1456. [PMC free article] [PubMed] [Google Scholar]
17. Tacchini L, Schiaffonati L, Pappalardo C, Gatti S, Bernelli-Zazzera A. Expression of HSP 70, immediate-early response and heme oxygenase genes in ischemic-reperfusion rat liver. Lab Invest. 1993;68:465–471. [PubMed] [Google Scholar]
18. Wong HR, Wispe JR. The stress response and the lung. Am J Physiol. 1997;17:L1–L9. [PubMed] [Google Scholar]
19. Beck SC, Paidas CN, Mooney ML, Deitch EA, De Maio A. Presence of the stress-inducible form of hsp-70 (hsp-72) in normal rat colon. Shock. 1995;3:398–402. [PubMed] [Google Scholar]
20. Kitamura Y, Hashimoto S, Mizuta N, Kobayashi A, Kooguchi K, Fujiwara I, Nakajima H. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med. 2001;163:762–769. [PubMed] [Google Scholar]
21. Serrao KL, Fortenberry JD, Owens ML, Harris FL, Brown LA. Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am J Physiol Lung Cell Mol Physiol. 2001;280:L298–L305. [PubMed] [Google Scholar]
22. Matute-Bello G, Liles WC, Steinberg KP, Kiener PA, Mongovin S, Chi EY, Jonas M, Martin TR. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS) J Immunol. 1999;163:2217–2225. [PubMed] [Google Scholar]
23. Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1168–L1178. [PubMed] [Google Scholar]
24. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11:372–377. [PubMed] [Google Scholar]
25. Akira S. Toll-like receptors and inate immunity. Adv Immunol. 2001;78:1–56. [PubMed] [Google Scholar]
26. Vanden Berghe W, Vermeulen L, De Wilde G, De Bosscher K, Boone E, Haegeman G. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol. 2000;60:1185–1195. [PubMed] [Google Scholar]
27. Aggarwal BB. Apoptosis and nuclear factor-κB: a tale of association and dissociation. Biochem Pharmacol. 2000;60:1033–1039. [PubMed] [Google Scholar]
28. Ghosh S, May MJ, Kopp ER. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–260. [PubMed] [Google Scholar]
29. Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-κB in pulmonary diseases. Chest. 2000;117:1482–1487. [PubMed] [Google Scholar]
30. Christman JW, Lancaster LN, Blackwell TS. A pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care Med. 1998;24:1131–1138. [PMC free article] [PubMed] [Google Scholar]
31. Van Damme J, Wuyts A, Froyen G, Van Coillie E, Struyf S, Billiau A, Proost P, Wang JM, Opdenakker G. Granulocyte chemotactic protein-2 and related CXC chemokines: from gene regulation to receptor usage. J Leukoc Biol. 1997;62:563–569. [PubMed] [Google Scholar]
32. Andrejko KM, Chen J, Deutschman CS. Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. Am J Physiol. 1998;375:G1423–G1429. [PubMed] [Google Scholar]
33. Deutschman CS, Demaio A, Buchman TG, Clemens MG. Sepsis-induced alterations in phosphoenolpyruvate carboxykinase expression: the role of insulin and glucagon. Circ Shock. 1993;40:295–302. [PubMed] [Google Scholar]
34. Deutschman CS, Andrejko K, Haber BA, Bellin LS, Harrison R, Elenko E, Taub RA. Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol. 1997;273:R1709–R1718. [PubMed] [Google Scholar]
35. Schears G, Zheng J, Deutschman C. Decreased transcription of surfactant proteins in an animal model of the adult respiratory distress syndrome (ATÃS) Shock. 1999;11(Suppl):21. [Google Scholar]
36. Weiss YG, Bouwman A, Gehan B, Raj N, Deutschman CS. Cecal ligation and double puncture impairs heat shock protein 70 (hsp-70) expression in the lungs of rats. Shock. 2000;13:19–23. [PubMed] [Google Scholar]
37. Malloy J, McCaig L, Veldhuizen R, Yao LJ, Joseph M, Whitsett J, Lewis J. Alterations of the endogenous surfactant system in septic adult rats. Am J Respir Crit Care Med. 1997;156:617–623. [PubMed] [Google Scholar]
38. Schroeder S, Lindemann C, Hoeft A, Putensen C, Decker D, von Ruecker AA, Stuber F. Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med. 1999;27:1080–1084. [PubMed] [Google Scholar]
39. Ofenstein JP, Heidemann S, Juett A, Sarnaik A. Endotoxin inhibits heat induced HSP-70 in rats. Crit Care Med. 1998;26(Suppl1 1):A 138. [Google Scholar]
40. Weiss YG, Tazelaar J, Gehan B, Bouwman A, Christofidou-Solomidou M, Yu Q-C, Raj N, Deutschman CS. Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture (CLP) in rats. Anesthesiology. 2001;95:974–982. [PubMed] [Google Scholar]
41. Snoeckx LHEH, Cornelussen RN, Van nieuwenhoven FA, Reneman RS, Van der vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001;81:1461–1497. [PubMed] [Google Scholar]
42. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med. 1994;22:914–922. [PubMed] [Google Scholar]
43. Jaatela M, Wissing D, Bauer PA, Li GC. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 1992;11:3507–3512. [PMC free article] [PubMed] [Google Scholar]
44. Wong HR, Ryan M, Menendez IY, Denenberg A, Wispe JR. Heat shock protein induction protects human respiratory epithelium against nitric oxide. mediated cytotoxicity. Shock. 1997;8:213–218. [PubMed] [Google Scholar]
45. Wong HR, Menendez IY, Ryan MA, Denenberg AG, Wispe JR. Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am J Physiol. 1998;275:L836–L841. [PubMed] [Google Scholar]
46. Mestril R, Giordano FJ, Conde AG, Dillmann WH. Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol. 1996;28:2351–2358. [PubMed] [Google Scholar]
47. Suzuki K, Sawa Y, Kaneda Y, Ichikawa H, Shirakura R, Matsuda H. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest. 1997;99:1645–1650. [PMC free article] [PubMed] [Google Scholar]
48. Hiratsuka M, Mora BN, Yano M, Mohanakumar T, Patterson GA. Gene transfer of heat shock protein 70 protects lung grafts from ischemia-reperfusion injury. Ann Thorac Surg. 1999;67:1421–1427. [PubMed] [Google Scholar]
49. Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS. Anti-inflammatory effect of heat shock protein induction is related to stabilization of IκB through preventing IκB kinase activation in respiratory epithelial cells. J Immunol. 2000;164:5416–5423. [PubMed] [Google Scholar]
50. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein HSP 70 in protection against stress-induced apoptosis. Mol Cell Biol. 1997;17:5317–5327. [PMC free article] [PubMed] [Google Scholar]
51. Helmbrecht K, Rensing L. Differential constitutive heat shock protein 70 expression during proliferation and differentiation of rat C6 glioma cells. Neurochem Res. 1999;24:1293. [PubMed] [Google Scholar]
52. Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92:2177–2186. [PubMed] [Google Scholar]
53. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–647. [PubMed] [Google Scholar]
54. Pilon M, Schekman R. Protein translocation: how Hsp70. pulls it off. Cell. 1999;97:679–682. [PubMed] [Google Scholar]
55. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852–1858. [PubMed] [Google Scholar]
56. Ianaro A, Ialenti A, Maffia P, Pisano B, Rosa MD. HSF1/hsp72 pathway as an endogenous anti. inflammatory system. FEBS Lett. 2001;499:239–244. [PubMed] [Google Scholar]
57. Kluck CJ, Patzelt H, Genevaux P, Brehmer D, Rist W, Schneider MJ, Bukau B, Mayer MP. Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J Biol Chem. 2002;277:41060–41069. [PubMed] [Google Scholar]
58. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–282. [PubMed] [Google Scholar]
59. Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fukayama M, Bargon J, Stier LE, Stratford-Perricaudet L. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992;68:143–155. [PubMed] [Google Scholar]
60. Dong JY, Wang D, Van Ginkel FW, Pascual DW, Frizzell RA. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther. 1996;7:319–331. [PubMed] [Google Scholar]
61. Raafat AM, Franko AP, Zafar R, Dulchavsky SA, Diebel LN, Ksenzenko S. Effect of thyroid hormone (T3)-responsive changes in surfactant apoproteins on surfactant function during sepsis. J Trauma. 1997;42:803–808. [PubMed] [Google Scholar]
62. Whitset JA, Clark JC, Wispe JR, Pryhuber GS. Effects of TNF and phorbol ester on human surfactant protein and MnSOD gene transcripton in vitro. Am J Physiol Lung Cell Mol Physiol. 1992;262:L688–L693. [PubMed] [Google Scholar]
63. Salome RG, McCoy DM, Ryan AJ, Mallampalli RK. Effects of intratracheal instillation of TNF on surfactant metabolism. J Appl Physiol. 2000;88:10–16. [PubMed] [Google Scholar]
64. Lanza JS, Lansey SC, Cleary MP, Rosato FE. Alterations in lipogenic enzymes and lipoprotein lipase activity during gram-negative sepsis in the rat. Arch Surg. 1982;117:144–147. [PubMed] [Google Scholar]
65. Yei S, Bachurski CJ, Weaver TE, Wert SE, Trapnell BC, Whitsett JA. Adenoviral-mediated gene transfer of human surfactant protein B to respiratory epithelial cells. Am J Respir Cell Mol Biol. 1994;11:329–336. [PubMed] [Google Scholar]
66. McCluskie MJ, Chu Y, Xia JL, Jessee J, Gebyehu G, Davis HL. Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA. Antisense Nucleic Acid Drug Dev. 1998;8:401–414. [PubMed] [Google Scholar]
67. Clement JM, Kent C. CTP:phosphocholine cytidylyltransferase: insight into regulatory mechanisms and novel functions. Biochem Biophys Res. 1999;257:643–650. [PubMed] [Google Scholar]
68. Wieprecht M, Wieder T, Paul C, Geilen CC, Orfanos CE. Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem. 1996;271:9955–9961. [PubMed] [Google Scholar]
69. Mallampalli RK, Ryan AJ, Salome RG, Jackowski S. Tumor necrosis factor-alpha inhibits expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 2000;275:9699–9708. [PubMed] [Google Scholar]
70. Gonzales LW, Ballard PL, Gonzales J. Glucocorticoid and cAMP increase fatty acid synthetase mRNA in human fetal lung explants. Biochim Biophys Acta. 1994;1215:49–58. [PubMed] [Google Scholar]
71. Mallampalli RK, Mathur SN, Warnock LJ, Salome RG, Hunninghake GW, Field FJ. Betamethasone modulation of sphingomyelin hydrolysis up-regulates CTP:cholinephosphate cytidylyltransferase activity in adult rat lung. Biochem J. 1996;318:333–341. [PMC free article] [PubMed] [Google Scholar]
72. Zagariya A, Bhat R, Uhal B, Navale S, Freidine M, Vidyasagar D. Cell death and lung cell histology in meconium aspirated newborn rabbit lung. Eur J Pediatr. 2000;159:819–826. [PubMed] [Google Scholar]
73. Touqui L, Arbibe L. A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today. 1999;5:244–249. [PubMed] [Google Scholar]
74. Weiss YG, Bellin L, Kim PK, Andrejko KM, Haaxma CA, Raj N, Furth EE, Deutschman CS. Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis. Am J Physiol. 2001;280:G968–G973. [PubMed] [Google Scholar]
75. Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM. The American-European Consensus Conference on ARDS. Part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling: acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157:1332–1347. [PubMed] [Google Scholar]
76. Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest. 2002;110:801–806. [PMC free article] [PubMed] [Google Scholar]
77. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukan B. Mechanisms of regulation of HSP-70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci USA. 1999;96:5452. [PMC free article] [PubMed] [Google Scholar]
78. Diamant S, Peres Ben-Zvi A, Bukau B, Goloubinoff P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem. 2000;275:21107–21113. [PubMed] [Google Scholar]
79. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY. HSP 70 prevents activation of stress kinases: a novel pathway of cellular thermotolerance. J Biol Chem. 1997;272:18033–18037. [PubMed] [Google Scholar]
80. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001;3:839–843. [PubMed] [Google Scholar]
81. Jaattela M. Overexpression of hsp 70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer. 1995;60:689–693. [PubMed] [Google Scholar]
82. Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif. 2000;33:341–365. [PMC free article] [PubMed] [Google Scholar]
83. Fujihara S, Nadler S. Intranuclear targeted delivery of functional NF-κB by 70kD heat shock protein. EMBO J. 1999;18:411–419. [PMC free article] [PubMed] [Google Scholar]
84. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol. 2001;18:621–663. [PubMed] [Google Scholar]
85. Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, Akanuma M, Shiratori Y, Omata M. H. pylori activates NFκB through a signaling pathway involving IκB kinases, NF-κB inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology. 2000;119:97–108. [PubMed] [Google Scholar]
86. Ling L, Cao Z, Goeddel DV. NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA. 1998;95:3792–3797. [PMC free article] [PubMed] [Google Scholar]
87. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A. IKK1 and IKK2: cytokine-activated IκB kinases essential for NF-κB activation. Science. 1997;278:860–866. [PubMed] [Google Scholar]
88. Ciechanover A, Laszlo A, Bercovich B, Stancovski I, Alkalay I, Ben-Neriah Y, Orian A (1995) The unbiquitin-mediated proteolytic system: involvement of molecular chaperones, degradation of oncoproteins, and activation of transcriptional regulators. Cold Spring Harbor Quant Biol 491–501 [PubMed]
89. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–554. [PubMed] [Google Scholar]
90. Volloch VZ, Sherman MY. Oncogenic potential of HSP72. Oncogene. 1999;18:3648–3652. [PubMed] [Google Scholar]
91. Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaprone Hsc-70. J Biol Chem. 1997;272:9002–9010. [PubMed] [Google Scholar]
92. Ferlito M, De Maio A. Effect of recovery time after heat shock on LPS stimulation. Shock. 2001;15(Suppl):89. [Google Scholar]
93. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev. 2004;18:1466–1481. [PMC free article] [PubMed] [Google Scholar]
94. Jyonouchi H, Sun S, Abiru T, Chareancholvanich S, Ingbar DH. The effects of hyperoxic injury and antioxidant vitamins on death and proliferation of human small airway epithelial cells. Am J Respir Mol Biol. 1998;19:426–436. [PubMed] [Google Scholar]
95. Mercer-Jones MA, Shrotri MS, Peyton JC, Remick DG, Cheadle WG. Neutrophil sequestration in liver and lung is differentially regulated by C-X-C chemokines during experimental peritonitis. Inflammation. 1999;23:305–319. [PubMed] [Google Scholar]
96. Waters CM, Ridge KM, Sunio G, Venetsanou K, Sznajder JI. Mechanical stretching of alveolar epithelial cells increases Na(+)K(+)-ATPase activity. J Appl Physiol. 1999;87:715–721. [PubMed] [Google Scholar]
97. Zhao MQ, Stoler MH, Liu AN, Wei B, Soguero C, Hahn YS, Enelow RI. Alveolar epithelial cell chemokine expression triggered by antigen-specific cytolytic CD8+ T cell recognition. J Clin Invest. 2000;106:R49–R58. [PMC free article] [PubMed] [Google Scholar]
98. Deutschman CS, Haber BA, Andrejko K, Cressman DE, Harrison R, Elenko E, Taub R. Increased expression of cytokine-induced neutrophil chemoattractant in septic rat liver. Am J Physiol. 1996;271:R593–R600. [PubMed] [Google Scholar]
99. Chen J, Raj N, Kim P, Andrejko KM, Deutschman CS. Intrahepatic nuclear factor κB activity and alpha 1-acid glycoprotein transcription do not predict outcome after cecal ligation and puncture in the rat. Crit Care Med. 2001;29:589–596. [PubMed] [Google Scholar]
100. Melcher A, Murphy S, Vile R. Heat shock protein expression in target cells infected with low levels of replication-competent virus contributes to the immunogenicity of adenoviral vectors. Hum Gene Ther. 1999;10:1431–1442. [PubMed] [Google Scholar]
101. Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal. 2001;13:389–400. [PubMed] [Google Scholar]
102. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol. 2000;2:476–483. [PubMed] [Google Scholar]

Articles from Journal of Anesthesia are provided here courtesy of Nature Publishing Group

-