Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Virology. 1991 Jul; 183(1): 225–238.
Published online 2004 Jul 22. doi: 10.1016/0042-6822(91)90135-X
PMCID: PMC7130809
PMID: 1711257

Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein

Abstract

The S glycoprotein of transmissible gastroenteritis virus (TGEV) has been shown to contain four major antigenic sites (A, B, C, and D). Site A is the main inducer of neutralizing antibodies and has been previously subdivided into the three subsites Aa, Ab, and Ac. The residues that contribute to these sites were localized by sequence analysis of 21 mutants that escaped neutralization or binding by TGEV-specific monoclonal antibodies (MAbs), and by epitope scanning (PEPSCAN). Site A contains the residues 538, 591, and 543, which are essential in the formation of subsites Aa, Ab, and Ac, respectively. In addition, mar mutant 1B.H6 with residue 586 changed had partially altered both subsite Aa and Ab, indicating that these subsites overlap in residue 586; i.e. this residue also is part of site A. The peptide 537-MKSGYGQPIA-547 represents, at least partially, subsite Ac which is highly conserved among coronaviruses. This site is relevant for diagnosis and could be of interest for protection. Other residues contribute to site B (residues 97 and 144), site C (residues 50 and 51), and site D (residue 385). The location of site D is in agreement with PEPSCAN results. Site C can be represented by the peptide 48-P-P/S-N-S-D/E-52 but is not exposed on the surface of native virus. Its accessibility can be modulated by treatment at pH >11 (at 4°) and temperatures >45°. Sites A and B are fully dependent on glycosylation for proper folding, while sites C and D are fully or partially independent of glycosylation, respectively. Once the S glycoprotein has been assembled into the virion, the carbohydrate moiety is not essential for the antigenic sites.

References

  • Bohl E.H., Gupta R.K.P., Olquín M.V.F., Saif L.J. Antibody responses in serum, colostrum and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect. Immun. 1972;6:289–301. [PMC free article] [PubMed] [Google Scholar]
  • Britton P., Page K.W. Sequence of the S-gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res. 1990;18:71–80. [PMC free article] [PubMed] [Google Scholar]
  • Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. [PMC free article] [PubMed] [Google Scholar]
  • Correa I., Gebauer F., Bullido M.J., Suñé C., Baay M.F.D., Zwaagstra K.A., Posthumus W.P.A., Lenstra J.A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990;71:271–279. [PubMed] [Google Scholar]
  • Correa I., Jiménez G., Suñé C., Bullido M.J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. [PMC free article] [PubMed] [Google Scholar]
  • Davies D.R., Sheriff S., Padlan E.A. Antibody-antigen complexes. J. Biol. Chem. 1988;263:10,541–10,544. [PubMed] [Google Scholar]
  • De Groot R.J., Van Leen R.W., Dalderup M.J.M., Vennema H., Horzineck M.C., Spaan W.J.M. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989;171:493–502. [PMC free article] [PubMed] [Google Scholar]
  • Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. [PubMed] [Google Scholar]
  • Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J. Gen. Virol. 1990;71:1313–1323. [PubMed] [Google Scholar]
  • Díez J., Mated M.G., Domingo E. Selection of antigenic variants of foot-and-mouth disease virus in the absence of antibodies, as revealed by an in situ assay. J. Gen. Virol. 1989;70:3281–3289. [PubMed] [Google Scholar]
  • DiMarchi R., Brook G., Gale C., Crancknell V., Doel T., Mowat N. A mutation in the R body-coding sequence destroys expression of the killer trait in P. Tetraurelia. Science. 1986;232:639–641. [PubMed] [Google Scholar]
  • Enjuanes L., Van Der Zeijst B. Molecular basis of transmissible gastroenteritis coronavirus (TGEV) epidemiology. In: Fraenkel-Conrat H., Wagner R.R., editors. The Coronaviruses. Plenum; New York: 1991. In Press. [Google Scholar]
  • Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978;3:179–190. [Google Scholar]
  • Geysen H.M., Meloen R.H., Barteling S.J. Vol. 81. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid; pp. 3998–4002. (Proc. Natl. Acad. Sci. USA). [PMC free article] [PubMed] [Google Scholar]
  • Holmes K.V., Roller E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med. Biol. 1981;142:133–142. [PubMed] [Google Scholar]
  • Holmes K.V., Williams R.K., Stephensen C.B. Coronavirus Receptors. In: Notkins A.L., Oldstone M.B.A., editors. Springer-Verlag; New York: 1989. pp. 106–113. (Concepts in Viral Pathogenesis III). [Google Scholar]
  • Jacobs L., de Groot R., Van Der Zeijst B.A.M., Horzineck M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. [PMC free article] [PubMed] [Google Scholar]
  • Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. [PMC free article] [PubMed] [Google Scholar]
  • Laviada M.D., Videgain S.P., Moreno L., Alonso F., Enjuanes L., Escribano J.M. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: Epitopes externally exposed. Virus Res. 1990;16:247–254. [PMC free article] [PubMed] [Google Scholar]
  • Lenstra J.A., Erkens J.H.F., Zwaagstra K.A., Posthumus W.P.A., Meloen R.H., Gebauer F., Enjuanes L., Stanley K.K. Selection of mimotopes from a random sequence expression library using monoclonal antibodies against transmissible gastroenteritis coronavirus. J. Immunol. 1991 in press. [Google Scholar]
  • McClurkin A.W., Norman J.0. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can. J. Comp. Vet. Sci. 1966;30:190–198. [PMC free article] [PubMed] [Google Scholar]
  • Marlin S.D., Holland T.C., Levine M., Glorioso J.C. Epitopes of herpes simplex virus type 1 glycoprotein gC are clustered in two distinct antigenic sites. J. Virol. 1985;53:128–136. [PMC free article] [PubMed] [Google Scholar]
  • Parry N.R., Barnett P.V., Ouldridge E.J., Rowlands D.J., Brown F. Neutralizing epitopes of type 0 foot-and-mouth virus. II. Mapping three conformational sites with synthetic peptide reagents. J. Gen. Virol. 1989;70:1493–1503. [PubMed] [Google Scholar]
  • Posthumus W.P.A., Lenstra J.A., Schaaper W.M.M., van Niewstadt A.P., Enjuanes L., Meloen R. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J. Virol. 1990;64:3304–3309. [PMC free article] [PubMed] [Google Scholar]
  • Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. [PubMed] [Google Scholar]
  • Sánchez C.M., Jiménez G., Laviada M.D., Correa I., Suñé C., Bullido M.J., Gebauer F., Smerdou C., Callebaut P., Escribano J.M., Enjuanes L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. [PMC free article] [PubMed] [Google Scholar]
  • Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [PMC free article] [PubMed] [Google Scholar]
  • Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. [PubMed] [Google Scholar]
  • Spaan W., Cavanagh D., Horzineck M.C. Coronaviruses. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of Viruses. II. The Basis for Serodiagnosis and Vaccines. Elsevier; Amsterdam: 1990. pp. 359–379. [Google Scholar]
  • Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. [PMC free article] [PubMed] [Google Scholar]
  • Suñé C., Jiménez G., Correa I., Bullido M.J., Gebauer F., Smerdou C., Enjuanes L. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 1990;177:559–569. [PMC free article] [PubMed] [Google Scholar]
  • Taguchi F., Fleming J.0. Comparison of six different murine coronavirus JHM variants by monoclonal antibodies against the E2 glycoprotein. Virology. 1989;169:223–235. [PMC free article] [PubMed] [Google Scholar]
  • Taniguchi K., Hoshino Y., Nishikawa K., Green K.Y., Maloy W.L., Morita Y., Urasawa S., Kapikian A.Z., Chanock R.M., Gorziglia M. Cross-reactive and serotype-specific neutralization epitopes on VP7 of human rotavirus: Nucleotide sequence analysis of antigenic mutants selected with monoclonal antibodies. J. Virol. 1988;62:1870–1874. [PMC free article] [PubMed] [Google Scholar]
  • Vandepol S.B., Lefrancois L., Holland J.J. Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology. 1986;148:312–325. [PubMed] [Google Scholar]
  • Wesley R.D. Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain) Adv. Exp. Med. Biol. 1990;276:301–306. [PubMed] [Google Scholar]
  • Wiegers K., Wetz K., Dernick R. Molecular basis for linkage of a continuous and discontinuous neutralization epitope on the structural polypeptlde VP2 of poliovirus type 1. J. Virol. 1990;64:1283–1289. [PMC free article] [PubMed] [Google Scholar]
  • Zimmern D., Kaesberg P. Vol. 75. 1978. 3′-Terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain-terminating inhibitors; pp. 4257–4261. (Proc. Natl. Acad. Sci. USA). [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

-