Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Virology. 2001 Jan 20; 279(2): 371–374.
Published online 2002 May 25. doi: 10.1006/viro.2000.0757
PMCID: PMC7133764
PMID: 11162792

Coronavirus Spike Proteins in Viral Entry and Pathogenesis

The Full Text of this article is available as a PDF (254K).

References

REFERENCES

1. Baric R.S., Yount B., Hensley L., Peel S.A., Chen W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol. 1997;71:1946–1955. [PMC free article] [PubMed] [Google Scholar]
2. Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basole A.A., Elia P.E., Holmes K.V. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc. Natl. Acad. Sci. USA. 1993;90:1716–1720. [PMC free article] [PubMed] [Google Scholar]
3. Fazakerley J.K., Parker S.E., Bloom F., Buchmeier M.J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type 4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology. 1992;187:178–188. [PMC free article] [PubMed] [Google Scholar]
4. Gallagher T.M. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J. Virol. 1997;71:3129–3137. [PMC free article] [PubMed] [Google Scholar]
5. Gallagher T.M., Escarmis C., Buchmeier M.J. Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein. J. Virol. 1991;65:1916–1928. [PMC free article] [PubMed] [Google Scholar]
6. Godfraind C., Havaux N., Holmes K.V., Couteleir J.P. Role of virus receptor-bearing endothelial cells of the blood–brain barrier in preventing the spread of mouse hepatitis virus-A59 into the central nervous system. J. Neurovirol. 1997;3:428–434. [PubMed] [Google Scholar]
7. Holmes K.V., Dveksler G.S. Specificity of coronavirus/receptor interactions. In: Wimmer E., editor. Cell Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1994. pp. 403–443. [Google Scholar]
8. Krueger D.K., Kelly S.M., Lewicki D.N., Ruffolo R., Gallagher T.M. Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion. J. Virol. 2000 [PMC free article] [PubMed] [Google Scholar]
9. Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994;68:5403–5410. [PMC free article] [PubMed] [Google Scholar]
10. Kuo L., Godeke G.-J., Raamsman M.J.B., Masters P.S., Rottier P.J.M. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: Crossing the host cell species barrier. J. Virol. 2000;74:1393–1406. [PMC free article] [PubMed] [Google Scholar]
11. Luo Z., Weiss S.R. Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology. 1998;244:483–494. [PMC free article] [PubMed] [Google Scholar]
12. Pearce B.D., Hobbs M.V., McGraw T.S., Buchmeier M.J. Cytokine induction during T cell mediated clearance of mouse hepatitis virus from neurons in vivo. J. Virol. 1994;68:5483–5495. [PMC free article] [PubMed] [Google Scholar]
13. Perlman S., Lane T.E., Buchmeier M.J. In: Coronaviruses: Hepatitis, Peritonitis and Central Nervous System Disease. Cunningham M.W., Fujinami R.S., editors. Lippincott-Williams and Wilkins; Philadelphia: 2000. pp. 331–348. [Google Scholar]
14. Phillips J.J., Chua M.M., Lavi E., Weiss S.R. Pathogenesis of chimeric MHV-4/MHV-A59 recombinant viruses: The murine coronavirus spike protein is a major determinant of neurovirulence. J. Virol. 1999;73:7752–7760. [PMC free article] [PubMed] [Google Scholar]
15. Rao P.V., Kumari S., Gallagher T.M. Identification of a contiguous 6-residue determinant in the MHV receptor that controls the level of virion binding to cells. Virology. 1997;229:336–348. [PMC free article] [PubMed] [Google Scholar]
16. Saeki K., Ohtsuka N., Taguchi F. Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J. Virol. 1997;71:9024–9031. [PMC free article] [PubMed] [Google Scholar]
17. Sanchez C.M., Izeta A., Sanchez-Morgado J.M., Alonso S., Sola I., Balasch M., Plana-Duran J., Enjuanes L. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 1999;73:7607–7618. [PMC free article] [PubMed] [Google Scholar]
18. Singh M., Berger B., Kim P.S. LearnCoil-VMF: Computational evidence for coiled-coil-like motifs in many viral membrane fusion proteins. J. Mol. Biol. 1999;290:1031–1041. [PMC free article] [PubMed] [Google Scholar]
19. Skehel J.J., Wiley D.C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell. 1998;95:871–874. [PubMed] [Google Scholar]
20. Sturman L.S., Ricard C.S., Holmes K.V. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37°C correlates with virus aggregation and virus-induced cell fusion. J. Virol. 1990;64:3042–3050. [PMC free article] [PubMed] [Google Scholar]
21. Wang F.I., Fleming J.O., Lai M.M.C. Sequence analysis of the spike protein gene of murine coronavirus variants: Study of genetic sites affecting neuropathogenicity. Virology. 1992;186:742–749. [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

-