Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Trans Am Ophthalmol Soc. 2001; 99: 271–300.
PMCID: PMC1359018
PMID: 11797315

Intraocular retinal prosthesis.

Abstract

PURPOSE: An electronic implant that can bypass the damaged photoreceptors and electrically stimulate the remaining retinal neurons to restore useful vision has been proposed. A number of key questions remain to make this approach feasible. The goal of this thesis is to address the following 2 specific null hypotheses: (1) Stimulus parameters make no difference in the electrically elicited retinal responses. (2) Just as we have millions of photoreceptors, so it will take a device that can generate millions of pixels/light points to create useful vision. METHODS: For electrophysiologic experiments, 2 different setups were used. In the first setup, charge-balanced pulses were delivered to the retinal surface via electrodes inserted through an open sky approach in normal or blind retinal degenerate (rd) mice. In the second setup, the rabbit retina was removed under red light conditions from an enucleated eye and then maintained in a chamber while being superfused with oxygenated, heated Ames media. In both setups, stimulating electrodes and recording electrodes were positioned on the retinal surface to evaluate the effect of varying stimulation parameters on the orthodromic retinal responses (i.e., recording electrode placed between stimulating electrodes and optic nerve head). For psychophysical experiments, visual images were divided into pixels of light that could be projected in a pattern on the retina in up to 8 sighted volunteers. Subjects were asked to perform various tasks ranging from reading and face recognition to various activities of daily living. RESULTS: Electrophysiologic experiments: In a normal mouse, a single cycle of a 1-kHz sine wave was significantly more efficient than a 1-kHz square wave (P < .05), but no such difference was noted in either of the 8- or 16-week-old rd mouse groups (8-week-old, P = .426; 16-week-old, P = .078). Charge threshold was significantly higher in 16-week-old rd mouse versus both 8-week-old rd and normal mouse for every stimulus duration (P < .05). In all groups, short duration pulses (40, 80, and 120 microseconds) were more efficient in terms of total charge (the product of pulse amplitude and pulse duration) than longer (500 and 1,000 microseconds) pulses (P < .05). In all groups, applying a pulse train did not lead to more efficient charge usage (P < .05). Psychophysical experiments: In high-contrast tests, facial recognition rates of over 75% were achieved for all subjects with dot sizes of up to 31.5 minutes of arc when using a 25 x 25 grid with 4.5 arc minute gaps, a 30% dropout rate, and 6 gray levels. Even with a 4 x 4 array of pixels, some subjects were able to accurately describe 2 of the objects. Subjects who were able to read the 4-pixel letter height sentences (on the 6 x 10 and 16 x 16 array) seemed to have a good scanning technique. Scanning at the proper velocity tends to bring out more contrast in the lettering. The reading speed for the 72-point font is a bit slower than for the next smaller font. This may be due to the limited number of letters (3) visible in the window with this large font. CONCLUSIONS: Specific parameters needed to stimulate the retina were identified. Delineating the optimum parameters will decrease the current requirements. Psychophysical tests show that with limited pixels and image processing, useful vision is possible. Both these findings should greatly simplify the engineering of an electronic retinal prosthesis.

Full Text

The Full Text of this article is available as a PDF (465K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Ross RD. Is perception of light useful to the blind patient? Arch Ophthalmol. 1998 Feb;116(2):236–238. [PubMed] [Google Scholar]
  • Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993 Jun;111(6):761–772. [PubMed] [Google Scholar]
  • Sharma RK, Ehinger B. Management of hereditary retinal degenerations: present status and future directions. Surv Ophthalmol. 1999 Mar-Apr;43(5):427–444. [PubMed] [Google Scholar]
  • del Cerro M, Gash DM, Rao GN, Notter MF, Wiegand SJ, Sathi S, del Cerro C. Retinal transplants into the anterior chamber of the rat eye. Neuroscience. 1987 Jun;21(3):707–723. [PubMed] [Google Scholar]
  • GLENN WW, MAURO A, LONGO E, LAVIETES PH, MACKAY FJ. Remote stimulation of the heart by radiofrequency transmission. Clinical application to a patient with Stokes-Adams syndrome. N Engl J Med. 1959 Nov 5;261:948–951. [PubMed] [Google Scholar]
  • Buckett JR, Peckham PH, Thrope GB, Braswell SD, Keith MW. A flexible, portable system for neuromuscular stimulation in the paralyzed upper extremity. IEEE Trans Biomed Eng. 1988 Nov;35(11):897–904. [PubMed] [Google Scholar]
  • Cameron T, Loeb GE, Peck RA, Schulman JH, Strojnik P, Troyk PR. Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs. IEEE Trans Biomed Eng. 1997 Sep;44(9):781–790. [PubMed] [Google Scholar]
  • Ledergerber CP. Postoperative electroanalgesia. Obstet Gynecol. 1978 Mar;51(3):334–338. [PubMed] [Google Scholar]
  • Gross RE, Lozano AM. Advances in neurostimulation for movement disorders. Neurol Res. 2000 Apr;22(3):247–258. [PubMed] [Google Scholar]
  • Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968 May;196(2):479–493. [PMC free article] [PubMed] [Google Scholar]
  • Pollen DA. Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol. 1977 Feb;14(1-2):67–86. [PubMed] [Google Scholar]
  • Dobelle WH, Mladejovsky MG. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol. 1974 Dec;243(2):553–576. [PMC free article] [PubMed] [Google Scholar]
  • Karny H. Clinical and physiological aspects of the cortical visual prosthesis. Surv Ophthalmol. 1975 Jul-Aug;20(1):47–58. [PubMed] [Google Scholar]
  • Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput. 1990 May;28(3):257–259. [PubMed] [Google Scholar]
  • Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP. "Braille" reading by a blind volunteer by visual cortex stimulation. Nature. 1976 Jan 15;259(5539):111–112. [PubMed] [Google Scholar]
  • Evans JR, Gordon J, Abramov I, Mladejovsky MG, Dobelle WH. Brightness of phosphenes elicited by electrical stimulation of human visual cortex. Sens Processes. 1979 Mar;3(1):82–94. [PubMed] [Google Scholar]
  • Girvin JP, Evans JR, Dobelle WH, Mladejovsky MG, Henderson DC, Abramov I, Gordon J, Turkel J. Electrical stimulation of human visual cortex: the effect of stimulus parameters on phosphene threshold. Sens Processes. 1979 Mar;3(1):66–81. [PubMed] [Google Scholar]
  • Henderson DC, Evans JR, Dobelle WH. The relationship between stimulus parameters and phosphene threshold/brightness, during stimulation of human visual cortex. Trans Am Soc Artif Intern Organs. 1979;25:367–371. [PubMed] [Google Scholar]
  • Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 2000 Jan-Feb;46(1):3–9. [PubMed] [Google Scholar]
  • Uematsu S, Chapanis N, Gucer G, Konigsmark B, Walker AE. Electrical stimulation of the cerebral visual system in man. Confin Neurol. 1974;36(2):113–124. [PubMed] [Google Scholar]
  • Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 1996 Apr;119(Pt 2):507–522. [PubMed] [Google Scholar]
  • Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res. 1999 Jul;39(15):2577–2587. [PubMed] [Google Scholar]
  • Jones KE, Normann RA. An advanced demultiplexing system for physiological stimulation. IEEE Trans Biomed Eng. 1997 Dec;44(12):1210–1220. [PubMed] [Google Scholar]
  • Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol. 1997 Mar;102(3):228–239. [PubMed] [Google Scholar]
  • Nordhausen CT, Maynard EM, Normann RA. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 1996 Jul 8;726(1-2):129–140. [PubMed] [Google Scholar]
  • Potts AM, Inoue J, Buffum D. The electrically evoked response of the visual system (EER). Invest Ophthalmol. 1968 Jun;7(3):269–278. [PubMed] [Google Scholar]
  • Potts AM, Inoue J. The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol. 1969 Dec;8(6):605–612. [PubMed] [Google Scholar]
  • Potts AM, Inoue J. The electrically evoked response of the visual system (EER). 3. Further contribution to the origin of the EER. Invest Ophthalmol. 1970 Oct;9(10):814–819. [PubMed] [Google Scholar]
  • Stone JL, Barlow WE, Humayun MS, de Juan E, Jr, Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992 Nov;110(11):1634–1639. [PubMed] [Google Scholar]
  • Santos A, Humayun MS, de Juan E, Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol. 1997 Apr;115(4):511–515. [PubMed] [Google Scholar]
  • Humayun MS, Prince M, de Juan E, Jr, Barron Y, Moskowitz M, Klock IB, Milam AH. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1999 Jan;40(1):143–148. [PubMed] [Google Scholar]
  • Curcio CA, Medeiros NE, Millican CL. Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1996 Jun;37(7):1236–1249. [PubMed] [Google Scholar]
  • Dawson WW, Radtke ND. The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci. 1977 Mar;16(3):249–252. [PubMed] [Google Scholar]
  • Humayun M, Propst R, de Juan E, Jr, McCormick K, Hickingbotham D. Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol. 1994 Jan;112(1):110–116. [PubMed] [Google Scholar]
  • Humayun MS, de Juan E, Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S. Pattern electrical stimulation of the human retina. Vision Res. 1999 Jul;39(15):2569–2576. [PubMed] [Google Scholar]
  • Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 1999 Jul;39(15):2555–2567. [PubMed] [Google Scholar]
  • Chow AY, Peachey NS. The subretinal microphotodiode array retinal prosthesis. Ophthalmic Res. 1998;30(3):195–198. [PubMed] [Google Scholar]
  • Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res. 1997;29(5):281–289. [PubMed] [Google Scholar]
  • Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998 Nov 30;813(1):181–186. [PubMed] [Google Scholar]
  • Yagi T, Hayashida Y. [Implantation of the artificial retina]. Nihon Rinsho. 1999 May;57(5):1208–1215. [PubMed] [Google Scholar]
  • Humayun MS, de Juan E, Jr, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol. 1996 Jan;114(1):40–46. [PubMed] [Google Scholar]
  • Majji AB, Humayun MS, Weiland JD, Suzuki S, D'Anna SA, de Juan E., Jr Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci. 1999 Aug;40(9):2073–2081. [PubMed] [Google Scholar]
  • Chow AY, Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett. 1997 Mar 28;225(1):13–16. [PubMed] [Google Scholar]
  • Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS. Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers. 1998 Mar;29(3):234–241. [PubMed] [Google Scholar]
  • Guenther E, Tröger B, Schlosshauer B, Zrenner E. Long-term survival of retinal cell cultures on retinal implant materials. Vision Res. 1999 Dec;39(24):3988–3994. [PubMed] [Google Scholar]
  • Shandurina AN. Vosstanovlenie zritel'nykh i slukhovykh funktsii s pomoshch'iu élektrostimuliatsii. Fiziol Cheloveka. 1995 Jan-Feb;21(1):25–29. [PubMed] [Google Scholar]
  • Shandurina AN, Panin AV, Sologubova EK, Kolotov AV, Goncharenko OI, Nikol'skii AV, Logunov VYu Results of the use of therapeutic periorbital electrostimulation in neurological patients with partial atrophy of the optic nerves. Neurosci Behav Physiol. 1996 Mar-Apr;26(2):137–142. [PubMed] [Google Scholar]
  • Brabyn JA. New developments in mobility and orientation aids for the blind. IEEE Trans Biomed Eng. 1982 Apr;29(4):285–289. [PubMed] [Google Scholar]
  • Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J. Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev. 1998 Oct;35(4):427–430. [PubMed] [Google Scholar]
  • Rocha G, Baines MG, Deschênes J. The immunology of the eye and its systemic interactions. Crit Rev Immunol. 1992;12(3-4):81–100. [PubMed] [Google Scholar]
  • Scheinberg LC, Levy A, Edelman F. Is the brain an "immunologically privileged site"? 2. Studies in induced host resistance to transplantable mouse glioma following irradiation of prior implants. Arch Neurol. 1965 Sep;13(3):283–286. [PubMed] [Google Scholar]
  • Dougherty SH, Simmons RL. Infections in bionic man: the pathobiology of infections in prosthetic devices-Part II. Curr Probl Surg. 1982 Jun;19(6):265–319. [PubMed] [Google Scholar]
  • Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina. 1999;19(6):546–552. [PubMed] [Google Scholar]
  • Veraart C, Grill WM, Mortimer JT. Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans Biomed Eng. 1993 Jul;40(7):640–653. [PubMed] [Google Scholar]
  • Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20(4):413–422. [PubMed] [Google Scholar]
  • Margalit E, Fujii GY, Lai JC, Gupta P, Chen SJ, Shyu JS, Piyathaisere DV, Weiland JD, De Juan E, Jr, Humayun MS. Bioadhesives for intraocular use. Retina. 2000;20(5):469–477. [PubMed] [Google Scholar]
  • Wise KD, Najafi K. Microfabrication techniques for integrated sensors and microsystems. Science. 1991 Nov 29;254(5036):1335–1342. [PubMed] [Google Scholar]
  • Pudenz RH, Bullara LA, Jacques S, Hambrecht FT. Electrical stimulation of the brain. III. The neural damage model. Surg Neurol. 1975 Oct;4(4):389–400. [PubMed] [Google Scholar]
  • Pudenz RH, Bullara LA, Dru D, Talalla A. Electrical stimulation of the brain. II. Effects on the blood-brain barrier. Surg Neurol. 1975 Aug;4(2):265–270. [PubMed] [Google Scholar]
  • Pudenz RH, Bullara LA, Talalla A. Electrical stimulation of the brain. I. Electrodes and electrode arrays. Surg Neurol. 1975 Jul;4(1):37–42. [PubMed] [Google Scholar]
  • McCreery DB, Agnew WF, Yuen TG, Bullara LA. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng. 1988;16(5):463–481. [PubMed] [Google Scholar]
  • McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990 Oct;37(10):996–1001. [PubMed] [Google Scholar]
  • McCreery DB, Yuen TG, Agnew WF, Bullara LA. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 1997 Oct;44(10):931–939. [PubMed] [Google Scholar]
  • Brown WJ, Babb TL, Soper HV, Lieb JP, Ottino CA, Crandall PH. Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys. J Neurosurg. 1977 Sep;47(3):366–379. [PubMed] [Google Scholar]
  • Tehovnik EJ. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996 Mar;65(1):1–17. [PubMed] [Google Scholar]
  • Agnew WF, Yuen TG, McCreery DB, Bullara LA. Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp Neurol. 1986 Apr;92(1):162–185. [PubMed] [Google Scholar]
  • Weiland JD, Anderson DJ. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng. 2000 Jul;47(7):911–918. [PubMed] [Google Scholar]
  • Bullara LA, McCreery DB, Yuen TG, Agnew WF. A microelectrode for delivery of defined charge densities. J Neurosci Methods. 1983 Sep;9(1):15–21. [PubMed] [Google Scholar]
  • Clark GM. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people. Clin Exp Pharmacol Physiol. 1996 Sep;23(9):766–776. [PubMed] [Google Scholar]
  • Grill WM, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Trans Rehabil Eng. 1998 Dec;6(4):364–373. [PubMed] [Google Scholar]
  • McCreery DB, Bullara LA, Agnew WF. Neuronal activity evoked by chronically implanted intracortical microelectrodes. Exp Neurol. 1986 Apr;92(1):147–161. [PubMed] [Google Scholar]
  • Riu PJ, Foster KR. Heating of tissue by near-field exposure to a dipole: a model analysis. IEEE Trans Biomed Eng. 1999 Aug;46(8):911–917. [PubMed] [Google Scholar]
  • Ko WH, Liang SP, Fung CD. Design of radio-frequency powered coils for implant instruments. Med Biol Eng Comput. 1977 Nov;15(6):634–640. [PubMed] [Google Scholar]
  • Heetderks WJ. RF powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans Biomed Eng. 1988 May;35(5):323–327. [PubMed] [Google Scholar]
  • Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res. 1997;29(5):269–280. [PubMed] [Google Scholar]
  • Brummer SB, Robblee LS, Hambrecht FT. Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann N Y Acad Sci. 1983;405:159–171. [PubMed] [Google Scholar]
  • McHardy J, Robblee LS, Marston JM, Brummer SB. Electrical stimulation with pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline. Biomaterials. 1980 Jul;1(3):129–134. [PubMed] [Google Scholar]
  • Robblee LS, McHardy J, Marston JM, Brummer SB. Electrical stimulation with Pt electrodes. V. The effect of protein on Pt dissolution. Biomaterials. 1980 Jul;1(3):135–139. [PubMed] [Google Scholar]
  • Beebe X, Rose TL. Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng. 1988 Jun;35(6):494–495. [PubMed] [Google Scholar]
  • Rose TL, Kelliher EM, Robblee LS. Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods. 1985 Jan;12(3):181–193. [PubMed] [Google Scholar]
  • Wiley JD, Webster JG. Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng. 1982 May;29(5):381–385. [PubMed] [Google Scholar]
  • Rubinstein JT, Spelman FA, Soma M, Suesserman MF. Current density profiles of surface mounted and recessed electrodes for neural prostheses. IEEE Trans Biomed Eng. 1987 Nov;34(11):864–875. [PubMed] [Google Scholar]
  • Grill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng. 1994 Jan-Feb;22(1):23–33. [PubMed] [Google Scholar]
  • Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng. 1970 Jul;17(3):238–247. [PubMed] [Google Scholar]
  • Hetke JF, Lund JL, Najafi K, Wise KD, Anderson DJ. Silicon ribbon cables for chronically implantable microelectrode arrays. IEEE Trans Biomed Eng. 1994 Apr;41(4):314–321. [PubMed] [Google Scholar]
  • BeMent SL, Wise KD, Anderson DJ, Najafi K, Drake KL. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng. 1986 Feb;33(2):230–241. [PubMed] [Google Scholar]
  • Kovacs GT, Storment CW, Rosen JM. Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans Biomed Eng. 1992 Sep;39(9):893–902. [PubMed] [Google Scholar]
  • Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, Craighead H. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol. 1999 Mar;156(1):33–49. [PubMed] [Google Scholar]
  • Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue XL, Zappia JJ, Wise KD. Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng. 1989 Jul;36(7):693–704. [PubMed] [Google Scholar]
  • Najafi K, Hetke JF. Strength characterization of silicon microprobes in neurophysiological tissues. IEEE Trans Biomed Eng. 1990 May;37(5):474–481. [PubMed] [Google Scholar]
  • Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992;20(4):423–437. [PubMed] [Google Scholar]
  • Cole KS, Curtis HJ. ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY. J Gen Physiol. 1939 May 20;22(5):649–670. [PMC free article] [PubMed] [Google Scholar]
  • HODGKIN AL, HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. [PMC free article] [PubMed] [Google Scholar]
  • HODGKIN AL, HUXLEY AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. [PMC free article] [PubMed] [Google Scholar]
  • Knighton RW. An electrically evoked slow potential of the frog's retina. I. Properties of response. J Neurophysiol. 1975 Jan;38(1):185–197. [PubMed] [Google Scholar]
  • Greenberg RJ, Velte TJ, Humayun MS, Scarlatis GN, de Juan E., Jr A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng. 1999 May;46(5):505–514. [PubMed] [Google Scholar]
  • Ranck JB., Jr Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975 Nov 21;98(3):417–440. [PubMed] [Google Scholar]
  • Shepherd RK, Hatsushika S, Clark GM. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res. 1993 Mar;66(1):108–120. [PubMed] [Google Scholar]
  • Szlavik RB, de Bruin H. The effect of anisotropy on the potential distribution in biological tissue and its impact on nerve excitation simulations. IEEE Trans Biomed Eng. 2000 Sep;47(9):1202–1210. [PubMed] [Google Scholar]
  • West DC, Wolstencroft JH. Strength-duration characteristics of myelinated and non-myelinated bulbospinal axons in the cat spinal cord. J Physiol. 1983 Apr;337:37–50. [PMC free article] [PubMed] [Google Scholar]
  • Grill WM, Jr, Mortimer JT. The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng. 1996 Feb;43(2):161–166. [PubMed] [Google Scholar]
  • Bostock H. The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol. 1983 Aug;341:59–74. [PMC free article] [PubMed] [Google Scholar]
  • Gorman PH, Mortimer JT. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng. 1983 Jul;30(7):407–414. [PubMed] [Google Scholar]
  • Bartlett JR, Doty RW. An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol Exp (Wars) 1980;40(4):713–727. [PubMed] [Google Scholar]
  • Grumet AE, Wyatt JL, Jr, Rizzo JF., 3rd Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods. 2000 Aug 15;101(1):31–42. [PubMed] [Google Scholar]
  • Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res. 2000;40(13):1785–1795. [PubMed] [Google Scholar]
  • Hesse L, Schanze T, Wilms M, Eger M. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol. 2000 Oct;238(10):840–845. [PubMed] [Google Scholar]
  • Shimazu K, Miyake Y, Fukatsu Y, Watanabe S. Striate cortical contribution to the transcorneal electrically evoked response of the visual system. Jpn J Ophthalmol. 1996;40(4):469–479. [PubMed] [Google Scholar]
  • Weiland JD, Humayun MS, Dagnelie G, de Juan E, Jr, Greenberg RJ, Iliff NT. Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol. 1999 Dec;237(12):1007–1013. [PubMed] [Google Scholar]
  • Knighton RW. An electrically evoked slow potential of the frog's retina. II. Identification with PII component of electroretinogram. J Neurophysiol. 1975 Jan;38(1):198–209. [PubMed] [Google Scholar]
  • Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res. 1992 Jul;32(7):1367–1372. [PubMed] [Google Scholar]
  • Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am A. 1992 May;9(5):673–677. [PubMed] [Google Scholar]
  • Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng. 1992;20(4):439–449. [PubMed] [Google Scholar]
  • Dobelle WH. Artificial vision for the blind. The summit may be closer than you think. ASAIO J. 1994 Oct-Dec;40(4):919–922. [PubMed] [Google Scholar]
  • García-Fernández JM, Jimenez AJ, Foster RG. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett. 1995 Feb 24;187(1):33–36. [PubMed] [Google Scholar]
  • Ogilvie JM, Tenkova T, Lett JM, Speck J, Landgraf M, Silverman MS. Age-related distribution of cones and ON-bipolar cells in the rd mouse retina. Curr Eye Res. 1997 Mar;16(3):244–251. [PubMed] [Google Scholar]
  • Rose TL, Robblee LS. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng. 1990 Nov;37(11):1118–1120. [PubMed] [Google Scholar]
  • Sanyal S, Zeilmaker GH. Development and degeneration of retina in rds mutant mice: light and electron microscopic observations in experimental chimaeras. Exp Eye Res. 1984 Aug;39(2):231–246. [PubMed] [Google Scholar]
  • Sato S, Sugimoto S, Chiba S. A procedure for recording electroretinogram and visual evoked potential in conscious dogs. J Pharmacol Methods. 1982 Nov;8(3):173–181. [PubMed] [Google Scholar]
  • Shimazu K, Miyake Y, Watanabe S. Retinal ganglion cell response properties in the transcorneal electrically evoked response of the visual system. Vision Res. 1999 Jun;39(13):2251–2260. [PubMed] [Google Scholar]
  • Toyoda J, Fujimoto M. Application of transretinal current stimulation for the study of bipolar-amacrine transmission. J Gen Physiol. 1984 Dec;84(6):915–925. [PMC free article] [PubMed] [Google Scholar]
  • Troyk PR, Schwan MA. Closed-loop class E transcutaneous power and data link for microimplants. IEEE Trans Biomed Eng. 1992 Jun;39(6):589–599. [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

-