Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Nucleic Acids Res. 1988 Nov 11; 16(21): 9909–9916.
PMCID: PMC338826
PMID: 2461550

A sequence motif in many polymerases.

Abstract

A 15-residue sequence motif has been found in many polymerases from various species and involving DNA and RNA dependence and product. The motif is characterized by a Tyr-Gly-Asp-(Thr)-Asp core flanked by hydrophobic spans five residues in length. An mRNA maturase segment is also suggested to display the motif pattern. The aspartates may be important in polymerase function by acting directly in catalysis and/or by binding magnesium.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (610K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Kamer G, Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984 Sep 25;12(18):7269–7282. [PMC free article] [PubMed] [Google Scholar]
  • Wong SW, Wahl AF, Yuan PM, Arai N, Pearson BE, Arai K, Korn D, Hunkapiller MW, Wang TS. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988 Jan;7(1):37–47. [PMC free article] [PubMed] [Google Scholar]
  • Johnson MS, McClure MA, Feng DF, Gray J, Doolittle RF. Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7648–7652. [PMC free article] [PubMed] [Google Scholar]
  • Argos P. Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis. J Mol Biol. 1987 Sep 20;197(2):331–348. [PubMed] [Google Scholar]
  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. [PMC free article] [PubMed] [Google Scholar]
  • Sidman KE, George DG, Barker WC, Hunt LT. The protein identification resource (PIR). Nucleic Acids Res. 1988 Mar 11;16(5):1869–1871. [PMC free article] [PubMed] [Google Scholar]
  • Lazowska J, Jacq C, Slonimski PP. Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell. 1980 Nov;22(2 Pt 2):333–348. [PubMed] [Google Scholar]
  • Armaleo D. Structure and evolution of prokaryotic and eukaryotic RNA polymerases: a model. J Theor Biol. 1987 Aug 7;127(3):301–314. [PubMed] [Google Scholar]
  • Sweetser D, Nonet M, Young RA. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1192–1196. [PMC free article] [PubMed] [Google Scholar]
  • Panka D, Dennis D. RNA polymerase. Direct evidence for two active sites involved in transcription. J Biol Chem. 1985 Feb 10;260(3):1427–1431. [PubMed] [Google Scholar]
  • Allison LA, Moyle M, Shales M, Ingles CJ. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell. 1985 Sep;42(2):599–610. [PubMed] [Google Scholar]
  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature. 313(6005):762–766. [PubMed] [Google Scholar]
  • Inokuchi Y, Hirashima A. Interference with viral infection by defective RNA replicase. J Virol. 1987 Dec;61(12):3946–3949. [PMC free article] [PubMed] [Google Scholar]
  • Hizi A, McGill C, Hughes SH. Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1218–1222. [PMC free article] [PubMed] [Google Scholar]
  • Boccardo G, Accotto GP. RNA-dependent RNA polymerase activity in two morphologically different white clover cryptic viruses. Virology. 1988 Apr;163(2):413–419. [PubMed] [Google Scholar]
  • Tanese N, Sodroski J, Haseltine WA, Goff SP. Expression of reverse transcriptase activity of human T-lymphotropic virus type III (HTLV-III/LAV) in Escherichia coli. J Virol. 1986 Sep;59(3):743–745. [PMC free article] [PubMed] [Google Scholar]
  • Katinka MD. RNA-dependent DNA polymerase activity in Paramecium tetraurelia: what for? Eur J Biochem. 1987 Mar 16;163(3):569–575. [PubMed] [Google Scholar]
  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. [PubMed] [Google Scholar]
  • Jurnak F. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science. 1985 Oct 4;230(4721):32–36. [PubMed] [Google Scholar]
  • Watson HC, Walker NP, Shaw PJ, Bryant TN, Wendell PL, Fothergill LA, Perkins RE, Conroy SC, Dobson MJ, Tuite MF, et al. Sequence and structure of yeast phosphoglycerate kinase. EMBO J. 1982;1(12):1635–1640. [PMC free article] [PubMed] [Google Scholar]
  • Hardman KD, Ainsworth CF. Structure of concanavalin A at 2.4-A resolution. Biochemistry. 1972 Dec 19;11(26):4910–4919. [PubMed] [Google Scholar]
  • Wu SX, Rinehart CA, Kaesberg P. Sequence and organization of southern bean mosaic virus genomic RNA. Virology. 1987 Nov;161(1):73–80. [PubMed] [Google Scholar]
  • Forster RL, Bevan MW, Harbison SA, Gardner RC. The complete nucleotide sequence of the potexvirus white clover mosaic virus. Nucleic Acids Res. 1988 Jan 11;16(1):291–303. [PMC free article] [PubMed] [Google Scholar]
  • Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Chertov OYu, Modyanov NN, Grinkevich VA, Makarova IA, Marchenko TV, Polovnikova IN, et al. The primary structure of Escherichia coli RNA polymerase. Nucleotide sequence of the rpoB gene and amino-acid sequence of the beta-subunit. Eur J Biochem. 1981 Jun 1;116(3):621–629. [PubMed] [Google Scholar]
  • Falkenburg D, Dworniczak B, Faust DM, Bautz EK. RNA polymerase II of Drosophila. Relation of its 140,000 Mr subunit to the beta subunit of Escherichia coli RNA polymerase. J Mol Biol. 1987 Jun 20;195(4):929–937. [PubMed] [Google Scholar]
  • Argos P. Evidence for a repeating domain in type I restriction enzymes. EMBO J. 1985 May;4(5):1351–1355. [PMC free article] [PubMed] [Google Scholar]
  • Jung GH, Leavitt MC, Hsieh JC, Ito J. Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8287–8291. [PMC free article] [PubMed] [Google Scholar]
  • Davison AJ, Scott JE. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. [PubMed] [Google Scholar]
  • Hodgman TC. An amino acid sequence motif linking viral DNA polymerases and plant virus proteins involved in RNA replication. Nucleic Acids Res. 1986 Aug 26;14(16):6769–6769. [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

-