Skip to main content

Advertisement

Log in

High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2017

This article has been updated

Abstract

Purpose

HO-1 has been proved to be associated with tumor aggressivity and poor prognosis in various cancers. Our study provides the first study to demonstrate the relationship of HO-1 expression and clinical characteristics in ovarian cancer patients.

Methods

Immunohistochemistry and western blotting were used to examine the expression of HO-1 in tissue species and fresh tissues. CCK-8 was used to investigate cell viability. Transwell chamber was performed to estimate migration and invasion capacities in A2780 and Skov-3 cells.

Results

Immunohistochemistry and western blotting showed that the expression of HO-1 was higher in ovarian cancer tissues than normal ovarian tissues. High expression of HO-1 was significantly associated with serous ovarian cancer, high FIGO stage, lymph node metastasis, and non-optimal debulking. Patients with high expression of HO-1 exhibited an unfavorable prognosis. In vitro inducing the expression of HO-1 promoted the proliferation and metastasis of A2780 and Skov-3 cells, with the increased expressions of mesenchymal marker (Vimentin), epithelial–mesenchymal transition-associated transcript factor (Zeb-1), anti-apoptotic protein (Bcl-2), and the decreased expressions of epithelial marker (Keratin) and pro-apoptotic protein (Bax). Meanwhile, after incubating A2780 and Skov-3 together with HO-1 inhibitor, above results could be reversed.

Conclusion

HO-1 might be a potential marker for prediction of ovarian cancer prognosis and a target for ovarian cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 20 October 2017

    n the original version of the article, Table 2 was incorrect. The corrected Table 2 is shown here. Therefore, in Results (page 3 of original version, right column, line 13), the OR of non-optimal debulking should read OR = 3.036 with 95% CI 1.452–6.348.

References

  1. Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2(10):2557–68.

    Article  CAS  PubMed  Google Scholar 

  3. Cantoni L, Rossi C, Rizzardini M, Gadina M, Ghezzi P. Interleukin-1 and tumour necrosis factor induce hepatic haem oxygenase. Feedback regulation by glucocorticoids. Biochem J. 1991;279(Pt 3):891–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizzardini M, Terao M, Falciani F, Cantoni L. Cytokine induction of haem oxygenase mRNA in mouse liver. Interleukin 1 transcriptionally activates the haem oxygenase gene. Biochem J. 1993;290(Pt 2):343–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272(9):5375–81.

    Article  CAS  PubMed  Google Scholar 

  6. Lee J, Lee SK, Lee BU, Lee HJ, Cho NP, Yoon JH, et al. Upregulation of heme oxygenase-1 in oral epithelial dysplasias. Int J Oral Maxillofac Surg. 2008;37(3):287–92. doi:10.1016/j.ijom.2007.07.028.

    Article  CAS  PubMed  Google Scholar 

  7. Nuhn P, Kunzli BM, Hennig R, Mitkus T, Ramanauskas T, Nobiling R, et al. Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo. Mol Cancer. 2009;8:37. doi:10.1186/1476-4598-8-37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang KA, Maeng YH, Zhang R, Yang YR, Piao MJ, Kim KC, et al. Involvement of heme oxygenase-1 in Korean colon cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2012;33(4):1031–8. doi:10.1007/s13277-012-0336-0.

    Article  CAS  Google Scholar 

  9. Gandini NA, Fermento ME, Salomon DG, Obiol DJ, Andres NC, Zenklusen JC, et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(3):2803–15. doi:10.1007/s13277-013-1373-z.

    Article  CAS  Google Scholar 

  10. Yin H, Fang J, Liao L, Maeda H, Su Q. Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer. 2014;14:436. doi:10.1186/1471-2407-14-436.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang TY, Liu CL, Chen MJ, Lee JJ, Pun PC, Cheng SP. Expression of haem oxygenase-1 correlates with tumour aggressiveness and BRAF V600E expression in thyroid cancer. Histopathology. 2015;66(3):447–56. doi:10.1111/his.12562.

    Article  PubMed  Google Scholar 

  12. Cheng CC, Guan SS, Yang HJ, Chang CC, Luo TY, Chang J, et al. Blocking heme oxygenase-1 by zinc protoporphyrin reduces tumor hypoxia-mediated VEGF release and inhibits tumor angiogenesis as a potential therapeutic agent against colorectal cancer. J Biomed Sci. 2016;23:18. doi:10.1186/s12929-016-0219-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li CG, Pu MF, Li CZ, Gao M, Liu MX, Yu CZ, et al. MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol Sin. 2016;. doi:10.1038/aps.2016.92.

    Google Scholar 

  14. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Can Res. 2004;64(9):3148–54.

    Article  CAS  Google Scholar 

  15. Chau LY. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22:22. doi:10.1186/s12929-015-0128-0.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sunamura M, Duda DG, Ghattas MH, Lozonschi L, Motoi F, Yamauchi J, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis. 2003;6(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  17. Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res. 2009;7(11):1745–55. doi:10.1158/1541-7786.mcr-08-0325.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai JR, Wang HM, Liu PL, Chen YH, Yang MC, Chou SH, et al. High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients. Cell Oncol (Dordr). 2012;35(6):461–71. doi:10.1007/s13402-012-0105-5.

    Article  CAS  PubMed  Google Scholar 

  19. Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Can Res. 2013;73(23):7009–21. doi:10.1158/0008-5472.can-13-1075.

    Article  CAS  Google Scholar 

  20. Degese MS, Mendizabal JE, Gandini NA, Gutkind JS, Molinolo A, Hewitt SM, et al. Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data. Lung Cancer (Amst Neth). 2012;77(1):168–75. doi:10.1016/j.lungcan.2012.02.016.

    Article  Google Scholar 

  21. Lee SS, Yang SF, Tsai CH, Chou MC, Chou MY, Chang YC. Upregulation of heme oxygenase-1 expression in areca-quid-chewing-associated oral squamous cell carcinoma. J Formosan Med Assoc Taiwan yi zhi. 2008;107(5):355–63. doi:10.1016/s0929-6646(08)60100-x.

    Article  CAS  PubMed  Google Scholar 

  22. Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, et al. Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol. 2007;42(7):852–8. doi:10.1080/00365520701192383.

    Article  CAS  PubMed  Google Scholar 

  23. Yanagawa T, Omura K, Harada H, Nakaso K, Iwasa S, Koyama Y, et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol. 2004;40(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  24. Joung EJ, Li MH, Lee HG, Somparn N, Jung YS, Na HK, et al. Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid Redox Signal. 2007;9(12):2087–98. doi:10.1089/ars.2007.1827.

    Article  CAS  PubMed  Google Scholar 

  25. Boschetto P, Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, et al. Decreased heme-oxygenase (HO)-1 in the macrophages of non-small cell lung cancer. Lung Cancer (Amst Neth). 2008;59(2):192–7. doi:10.1016/j.lungcan.2007.08.019.

    Article  Google Scholar 

  26. Lin PH, Lan WM, Chau LY. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene. 2013;32(18):2325–34. doi:10.1038/onc.2012.244.

    Article  CAS  PubMed  Google Scholar 

  27. Chen GG, Liu ZM, Vlantis AC, Tse GM, Leung BC, van Hasselt CA. Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J Cell Biochem. 2004;92(6):1246–56. doi:10.1002/jcb.20157.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YS, Li HS, Qi DF, Zhang J, Jiang XC, Shi K, et al. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J Gastroenterol WJG. 2014;20(26):8572–82. doi:10.3748/wjg.v20.i26.8572.

    Article  PubMed  Google Scholar 

  29. Kocanova S, Buytaert E, Matroule JY, Piette J, Golab J, de Witte P, et al. Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis Int J Programm Cell Death. 2007;12(4):731–41. doi:10.1007/s10495-006-0016-x.

    Article  CAS  Google Scholar 

  30. Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal. 2010;12(12):1383–430. doi:10.1089/ars.2009.2737.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Development and Reform commission Project of Shandong Province (26010104081103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

For this type of study, formal consent is not required.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s12094-017-1769-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xu, Y., Lu, J. et al. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells. Clin Transl Oncol 20, 491–499 (2018). https://doi.org/10.1007/s12094-017-1738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1738-7

Keywords

Navigation

-