Synthesis 2014; 46(24): 3399-3414
DOI: 10.1055/s-0034-1378618
paper
© Georg Thieme Verlag Stuttgart · New York

Bis(2-aminobenzoimidazole)-Organocatalyzed Asymmetric Alkylation of Activated Methylene Compounds with Benzylic and Allylic Alcohols

Paz Trillo
Departamento de Química Orgánica, Facultad de Ciencias, and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: alex.baeza@ua.es   Email: cnajera@ua.es
,
Alejandro Baeza*
Departamento de Química Orgánica, Facultad de Ciencias, and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: alex.baeza@ua.es   Email: cnajera@ua.es
,
Carmen Nájera*
Departamento de Química Orgánica, Facultad de Ciencias, and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: alex.baeza@ua.es   Email: cnajera@ua.es
› Author Affiliations
Further Information

Publication History

Received: 15 July 2014

Accepted: 18 July 2014

Publication Date:
04 September 2014 (online)


Abstract

The first organocatalyzed asymmetric alkylation of activated methylene compounds using benzylic and allylic alcohols as alkylating agents through dual hydrogen bond activation in an SN1-type reaction is reported. This green protocol employs a bis(2-aminobenzoimidazole) in combination with an achiral Brønsted acid as a bifunctional catalytic system and gives the alkylation products with moderate to good enantioselectivities. Although the scope of the reaction is limited, this methodology can be considered as complementary to existing metal-catalyzed processes. In addition, modest results were obtained in a first attempt to perform a metal-free asymmetric Tsuji–Trost reaction using allylic alcohols. Finally, the recovery and reusability of the organocatalyst is also achieved.

Supporting Information

 
  • References


    • For reviews about the use of free alcohols in substitution reactions, see:
    • 1a Muzart J. Eur. J. Org. Chem. 2007; 3077
    • 1b Emer E, Sinisi R, Guiteras-Capdevila M, Petruzzielo D, De Vicentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 1c Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 1d Baeza A, Nájera C. Synthesis 2014; 46: 25
  • 2 Cozzi PG, Benfatti F, Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313

    • For recent selected examples, see:
    • 3a Bergonzini G, Vera S, Melchiorre P. Angew. Chem. Int. Ed. 2010; 49: 9685
    • 3b Stiller J, Márques-López E, Herrera RP, Frölich R, Strohmann C, Christmann M. Org. Lett. 2011; 13: 70
    • 3c Xiao J, Zhao K, Loh T.-P. Chem. Asian J. 2011; 6: 2890
    • 3d Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
    • 3e Xiao J, Zhao K, Loh T.-P. Chem. Commun. 2012; 48: 3548
    • 3f Xu B, Guo Z.-L, Jin W.-Y, Wang Z.-P, Peng Y.-G, Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
    • 3g Trifonidou M, Kokotos CG. Eur. J. Org. Chem. 2012; 1563
    • 3h Xiao J. Org. Lett. 2012; 14: 1716
    • 3i Stiller J, Vorholt AJ, Ostrowski KA, Behr A, Christmann M. Chem. Eur. J. 2012; 18: 9496
  • 4 Organocatalytic Enantioselective Conjugate Addition Reactions . Vicario JL, Badia D, Carrillo L, Reyes E. RSC; Cambridge: 2010
  • 5 Shibata M, Ikeda M, Motoyama K, Miyake Y, Nishibayashi Y. Chem. Commun. 2012; 48: 9528
  • 6 Trillo P, Baeza A, Nájera C. Adv. Synth. Catal. 2013; 355: 2815

    • For recent contributions from our group about allylic substitution using free alcohols as alkylating agents, see:
    • 7a Giner X, Trillo P, Nájera C. J. Organomet. Chem. 2010; 696: 357
    • 7b Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2929
    • 7c Trillo P, Baeza A, Nájera C. J. Org. Chem. 2012; 77: 7344
    • 7d Trillo P, Baeza A, Nájera C. ChemCatChem 2013; 5: 1538

      For selected recent publications from our group dealing with the use of activated methylene compounds in enantioselective reactions, see:
    • 8a Tarí S, Chinchilla R, Nájera C. Tetrahedron: Asymmetry 2009; 20: 2651
    • 8b Almaşi D, Alonso DA, Gómez-Bengoa E, Nájera C. J. Org. Chem. 2009; 74: 6163
    • 8c Tarí S, Chinchilla R, Nájera C. Tetrahedron: Asymmetry 2010; 21: 2872
    • 8d Tarí S, Chinchilla R, Nájera C, Yus M. ARKIVOC 2011; 7: 116 ; http://www.arkat-usa.org/home
    • 8e Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Org. Lett. 2011; 13: 6106
    • 8f Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Eur. J. Org. Chem. 2013; 1434 ; and references therein

      The E values (electrophilicity parameters in Mayr’s scale) are related with carbocation stability and hence with the reactivity. Thus, lower E value implies higher stability and lower reactivity. E (1a +) = –7.02; E (1b +) = +0.47; E (1d +) = 0; E (4a) = +2.70; E (4b) = –1.45. Extracted from:
    • 9a Minegishi S, Mayr H. J. Am. Chem. Soc. 2003; 125: 286
    • 9b Ammer J, Nolte C, Mayr H. J. Am. Chem. Soc. 2012; 134: 13902

    • For selected reviews on this topic, see:
    • 9c Mayr H, Ofial AR. Pure Appl. Chem. 2005; 77: 1807
    • 9d Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
    • 9e Cozzi PG, Benfatti F. Angew. Chem. Int. Ed. 2010; 49: 256
  • 10 See Supporting Information for further experiments and details

    • For recent reviews about the use of free allylic alcohols in enantioselective processes, see:
    • 11a Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994
    • 11b Bandini M, Cera G, Chiarucci M. Synthesis 2012; 44: 504
  • 12 Very recently a metal-free Tsuji–Trost type reaction has been published using chiral phosphoric acids as the organocatalyst: Wang P.-S, Zhou X.-L, Gong L.-Z. Org. Lett. 2014; 16: 976
    • 13a Galliford CV, Scheidt KA. Chem. Commun. 2008; 1926
    • 13b House HO, Hudson CB. J. Org. Chem. 1979; 35: 647
    • 13c Bowman WR, Westlake PJ. Tetrahedron 1992; 48: 4027