Cardiac arrhythmias have been traditionally simulated using continuous models that assume tissue homogeneity and use a relatively large spatial discretization. However, it is believed that the tissue fibrosis and collagen deposition, which occur on a micron-level, are critical factors in arrhythmogenesis in diseased tissues. Consequently, it remains unclear how well continuous models, which use averaged electrical properties, are able to accurately capture complex conduction behaviors such as re-entry in fibrotic tissues. The objective of this study was to compare re-entrant behavior in discrete microstructural models of fibrosis and in two types of equivalent continuous models, a homogenous continuous model and a hybrid continuous model with distinct heterogeneities. In the discrete model, increasing levels of tissue fibrosis lead to a substantial increase in the re-entrant cycle length which is inadequately reflected in the homogenous continuous models. These cycle length increases appear to be primarily due to increases in the tip path length and to altered restitution behavior, and suggest that it is critical to consider the discrete effects of fibrosis on conduction when studying arrhythmogenesis in fibrotic myocardium. Hybrid models are able to accurately capture some aspects of re-entry and, if carefully tuned, may provide a framework for simulating conduction in diseased tissues with both accuracy and efficiency.

1.
S.
Alonso
and
M.
Bär
, “
Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue
,”
Phys. Rev. Lett.
110
,
158101
(
2013
).
2.
S.
Alonso
,
R.
Kapral
, and
M.
Bär
, “
Effective medium theory for reaction rates and diffusion coefficients of heterogeneous systems
,”
Phys. Rev. Lett.
102
,
238302
(
2009
).
3.
I.
Banville
and
R. A.
Gray
, “
Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias
,”
J. Cardiovasc. Electrophysiol.
13
,
1141
1149
(
2002
).
4.
V. E.
Bondarenko
, “
Computer model of action potential of mouse ventricular myocytes
,”
AJP, Heart Circ. Physiol.
287
,
H1378
H1403
(
2004
).
5.
D.
Bruce
,
P.
Pathmanathan
, and
J. P.
Whiteley
, “
Modelling the effect of gap junctions on tissue-level cardiac electrophysiology
,”
Bull. Math. Biol.
76
,
431
454
(
2014
).
6.
A.
Bueno-Orovio
,
D.
Kay
,
V.
Grau
,
B.
Rodriguez
, and
K.
Burrage
, “
Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization
,”
J. R. Soc. Interface
11
,
20140352
20140352
(
2014
).
7.
E. M.
Cherry
, “
Suppression of alternans and conduction blocks despite steep APD restitution: Electrotonic, memory, and conduction velocity restitution effects
,”
AJP Heart Circ. Physiol.
286
,
H2332
H2341
(
2004
).
8.
R. H.
Clayton
,
O.
Bernus
,
E. M.
Cherry
,
H.
Dierckx
,
F. H.
Fenton
,
L.
Mirabella
,
A. V.
Panfilov
,
F. B.
Sachse
,
G.
Seemann
, and
H.
Zhang
, “
Models of cardiac tissue electrophysiology: Progress, challenges and open questions
,”
Prog. Biophys. Mol. Biol.
104
,
22
48
(
2011
).
9.
C. M.
Costa
,
F. O.
Campos
,
A. J.
Prassl
,
R. W.
dos Santos
,
D.
Sánchez-Quintana
,
H.
Ahammer
,
E.
Hofer
, and
G.
Plank
, “
An efficient finite element approach for modeling fibrotic clefts in the heart
,”
IEEE Trans. Biomed. Eng.
61
,
900
910
(
2014
).
10.
C. M. C.
Costa
,
F. O.
Campos
,
A. J.
Prassl
,
R. W.
dos Santos
,
D.
Sánchez-Quintana
,
E.
Hofer
, and
G.
Plank
, “
A finite element approach for modeling micro-structural discontinuities in the heart
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
2011
,
437
440
(
2011
).
11.
C. M.
Costa
and
R.
Weber Dos Santos
, “
Limitations of the homogenized cardiac Monodomain model for the case of low gap junctional coupling
,”
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
2010
,
228
231
(
2010
).
12.
Z. J.
Engelman
,
M. L.
Trew
, and
B. H.
Smaill
, “
Structural heterogeneity alone is a sufficient substrate for dynamic instability and altered restitution
,”
Circ. Arrhythmia Electrophysiol.
3
,
195
203
(
2010
).
13.
T.
Gokhale
,
E.
Medvescek
, and
C.
Henriquez
, “
Continuous models fail to capture details of reentry in fibrotic myocardium
,”
Comput. Cardiol.
2016
,
7868706
.
14.
P. E.
Hand
,
B. E.
Griffith
, and
C. S.
Peskin
, “
Deriving macroscopic myocardial conductivities by homogenization of microscopic models
,”
Bull. Math. Biol.
71
,
1707
1726
(
2009
).
15.
C. S.
Henriquez
, “
A brief history of tissue models for cardiac electrophysiology
,”
IEEE Trans. Biomed. Eng.
61
,
1457
1465
(
2014
).
16.
M. L.
Hubbard
and
C. S.
Henriquez
, “
A microstructural model of reentry arising from focal breakthrough at sites of source-load mismatch in a central region of slow conduction
,”
Am. J. Physiol. Heart Circ. Physiol.
306
,
H1341
H1352
(
2014
).
17.
M. L.
Hubbard
,
W.
Ying
, and
C. S.
Henriquez
, “
Effect of gap junction distribution on impulse propagation in a monolayer of myocytes: A model study
,”
Europace
9
(Suppl
6
),
vi20
vi28
(
2007
).
18.
V.
Jacquemet
and
C. S.
Henriquez
, “
Genesis of complex fractionated atrial electrograms in zones of slow conduction: a computer model of microfibrosis
,”
Heart Rhythm
6
,
803
810
(
2009
).
19.
S.
de Jong
,
T. a B.
van Veen
,
H. V. M.
van Rijen
, and
J. M. T.
de Bakker
, “
Fibrosis and cardiac arrhythmias
,”
J. Cardiovasc. Pharmacol.
57
,
630
638
(
2011
).
20.
T.
Kawara
,
R.
Derksen
,
J. R.
de Groot
,
R.
Coronel
,
S.
Tasseron
,
a. C.
Linnenbank
,
R. N.
Hauer
,
H.
Kirkels
,
M. J.
Janse
, and
J. M.
de Bakker
, “
Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis
,”
Circulation
104
,
3069
3075
(
2001
).
21.
M. W.
Krueger
,
K. S.
Rhode
,
M. D.
O'Neill
,
C. A.
Rinaldi
,
J.
Gill
,
R.
Razavi
,
G.
Seemann
, and
O.
Doessel
, “
Patient-specific modeling of atrial fibrosis increases the accuracy of sinus rhythm simulations and may explain maintenance of atrial fibrillation
,”
J. Electrocardiol.
47
,
324
328
(
2014
).
22.
N. F.
Marrouche
,
D.
Wilber
,
G.
Hindricks
,
P.
Jais
,
N.
Akoum
,
F.
Marchlinski
,
E.
Kholmovski
,
N.
Burgon
,
N.
Hu
,
L.
Mont
,
T.
Deneke
,
M.
Duytschaever
,
T.
Neumann
,
M.
Mansour
,
C.
Mahnkopf
,
B.
Herweg
,
E.
Daoud
,
E.
Wissner
,
P.
Bansmann
 et al, “
Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study
,”
JAMA
311
,
498
506
(
2014
).
23.
K. S.
McDowell
,
S.
Zahid
,
F.
Vadakkumpadan
,
J.
Blauer
,
R. S.
MacLeod
, and
N. A.
Trayanova
, “
Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling
,”
PLoS One
10
,
e0117110
(
2015
).
24.
K. S.
McDowell
,
H. J.
Arevalo
,
M. M.
Maleckar
, and
N. A.
Trayanova
, “
Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density
,”
Biophys. J.
101
,
1307
1315
(
2011
).
25.
K. S.
McDowell
,
F.
Vadakkumpadan
,
R.
Blake
,
J.
Blauer
,
G.
Plank
,
R. S.
MacLeod
, and
N. A.
Trayanova
, “
Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation
,”
J. Electrocardiol.
45
,
640
645
(
2012
).
26.
K. S.
McDowell
,
F.
Vadakkumpadan
,
R.
Blake
,
J.
Blauer
,
G.
Plank
,
R. S.
Macleod
, and
N. A.
Trayanova
, “
Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation
,”
Biophys. J.
104
,
2764
2773
(
2013
).
27.
H. B.
Mistry
, “
To the Editor—Misuse of null hypothesis testing: Analysis of biophysical model simulations
,”
Hear. Rhythm
14
,
e50
(
2017
).
28.
J.
Pormann
,
A Modular Simulation System for the Bidomain Equations
(
Duke University
,
1999
).
29.
Z.
Qu
,
J. N.
Weiss
, and
A.
Garfinkel
, “
Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study
,”
Am. J. Physiol.
276
,
H269
H283
(
1999
).
30.
S.
Rohr
and
B. M.
Salzberg
, “
Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures
,”
J. Gen. Physiol.
104
,
287
309
(
1994
).
31.
M. S.
Spach
,
P. C.
Dolber
, and
J. F.
Heidlage
, “
Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation
,”
Circ. Res.
62
,
811
832
(
1988
).
32.
M. S.
Spach
,
J. F.
Heidlage
,
P. C.
Dolber
, and
R. C.
Barr
, “
Mechanism of origin of conduction disturbances in aging human atrial bundles: Experimental and model study
,”
Hear. Rhythm
4
,
175
185
(
2007
).
33.
M. S.
Spach
,
W. T.
Miller
,
D. B.
Geselowitz
,
R. C.
Barr
,
J. M.
Kootsey
, and
E. A.
Johnson
, “
The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents
,”
Circ. Res.
48
,
39
54
(
1981
).
34.
R. J.
Spiteri
and
R. C.
Dean
, “
Stiffness analysis of cardiac electrophysiological models
,”
Ann. Biomed. Eng.
38
,
3592
3604
(
2010
).
35.
J. G.
Stinstra
,
C. S.
Henriquez
, and
R. S.
Macleod
, “
Comparison of microscopic and bidomain models of anisotropic conduction
,”
Comput. Cardiol.
2010
,
657
660
(
2009
).
36.
J.
Stinstra
,
R.
MacLeod
, and
C.
Henriquez
, “
Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level
,”
Ann. Biomed. Eng.
38
,
1399
1414
(
2010
).
37.
A.
Toure
and
C.
Cabo
, “
Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential
,”
Med. Biol. Eng. Comput.
50
,
813
825
(
2012
).
38.
K. H. W. J.
Ten Tusscher
and
A. V.
Panfilov
, “
Influence of diffuse fibrosis on wave propagation in human ventricular tissue
,”
Europace
9
(
6
),
vi38
vi45
(
2007
).
39.
E.
Vigmond
,
A.
Pashaei
,
S.
Amraoui
,
H.
Cochet
, and
M.
Hassaguerre
, “
Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data
,”
Hear. Rhythm
13
,
1536
1543
(
2016
).
40.
L. J.
Wang
and
E. A.
Sobie
, “
Mathematical model of the neonatal mouse ventricular action potential
,”
Am. J. Physiol. Heart Circ. Physiol.
294
,
H2565
H2575
(
2008
).
41.
Y.
Xie
,
a.
Garfinkel
,
P.
Camelliti
,
P.
Kohl
,
J. N.
Weiss
, and
Z.
Qu
, “
Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study
,”
Hear. Rhythm
6
,
1641
1649
(
2009
).
42.
S.
Zahid
,
H.
Cochet
,
P. M.
Boyle
,
E. L.
Schwarz
,
K. N.
Whyte
,
E. J.
Vigmond
,
R.
Dubois
,
M.
Hocini
,
M.
Haïssaguerre
,
P.
Jaïs
, and
N. A.
Trayanova
, “
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern
,”
Cardiovasc. Res.
110
,
443
454
(
2016
).
You do not currently have access to this content.