We explore the emergence of a variety of different spatiotemporal patterns in a 2D lattice of self-sustained oscillators, which interact nonlocally through an active nonlinear element. A basic element is a van der Pol oscillator in a regime of relaxation oscillations. The active nonlinear coupling can be implemented by a radiophysical element with negative resistance in its current–voltage curve taking into account nonlinear characteristics (for example, a tunnel diode). We show that such coupling consists of two parts, namely, a repulsive linear term and an attractive nonlinear term. This interaction leads to the emergence of only standing waves with periodic dynamics in time and absence of any propagating wave processes. At the same time, many different spatiotemporal patterns occur when the coupling parameters are varied, namely, regular and complex cluster structures, such as chimera states. This effect is associated with the appearance of new periodic states of individual oscillators by the repulsive part of coupling, while the attractive term attenuates this effect. We also show influence of the coupling nonlinearity on the spatiotemporal dynamics.

1.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
, Springer Series in Synergetics (
Springer-Verlag
,
Berlin
,
1984
).
2.
V.
Nekorkin
and
M.
Velarde
, Synergetic Phenomena in Active Lattices, Springer Series in Synergetics (Springer, Berlin, 2002).
3.
G.
Osipov
,
J.
Kurths
, and
C.
Zhou
, Synchronization in Oscillatory Networks, Springer Series in Synergetics (Springer, Berlin, 2007).
4.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
5.
S.
Boccaletti
,
A.
Pisarchik
,
C.
Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2008
), ISBN: 9781107056268.
6.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
,
Phys. Rep.
424
,
175
308
(
2006
).
7.
E.
Estrada
,
The Structure of Complex Networks: Theory and Applications
(
Oxford University Press
,
2012
).
8.
H.
Yamamoto
,
S.
Kubota
,
F.
Shimizu
,
A.
Hirano-Iwata
, and
M.
Niwano
,
Front. Comput. Neurosci.
12
,
17
(
2018
).
10.
K.
Kaneko
,
Nonlinear Science: Theory and Applications
(
John Wiley & Sons
,
New York
,
1993
).
11.
V.
Afraimovich
,
S. N.
Chow
, and
J.
Hale
,
Physica D
103
,
442
451
(
1997
).
12.
F.
Xie
and
G.
Hu
,
Phys. Rev. E
55
,
79
(
1997
).
13.
J. C.
Neu
,
R. S.
Preissig
, Jr.
, and
W.
Krassowska
,
Physica D
102
,
285
299
(
1997
).
14.
I.
Shepelev
,
D.
Shamshin
,
G.
Strelkova
, and
T.
Vadivasova
,
Chaos, Solitons Fractals
104
,
153
160
(
2017
).
15.
A.
Mikhailov
and
A.
Loskutov
,
Foundations of Synergetics II: Complex Patterns
(
Springer Science & Business Media
,
2012
), Vol. 52.
16.
A.
Pertsov
,
E.
Ermakova
, and
A.
Panfilov
,
Physica D
14
,
117
124
(
1984
).
17.
G.
Hu
,
J.
Xiao
,
L. O.
Chua
, and
L.
Pivka
,
Phys. Rev. Lett.
80
,
1884
(
1998
).
18.
H.
Zhang
,
B.
Hu
, and
G.
Hu
,
Phys. Rev. E
68
,
026134
(
2003
).
19.
P. S.
Hagan
,
Adv. Appl. Math.
2
,
400
416
(
1981
).
20.
H.
Luo
and
J.
Ma
,
Int. J. Mod. Phys. B
34
,
2050137
(
2020
).
21.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
22.
D.
Abrams
and
S.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
23.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
106
,
234102
(
2011
).
24.
A.
Hagerstrom
,
T.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
,
Nat. Phys.
8
,
658
661
(
2012
).
25.
E.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
26.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
,
Phys. Rev. Lett.
112
,
154101
(
2014
).
27.
I.
Shepelev
and
T.
Vadivasova
,
Commun. Nonlinear Sci. Numer. Simul.
79
,
104925
(
2019
).
28.
A.
Zakharova
,
Chimera Patterns in Networks: Interplay Between Dynamics, Structure, Noise, and Delay
(
Springer International Publishing
,
2020
).
29.
G.
Balázsi
,
A.
Cornell-Bell
,
A.
Neiman
, and
F.
Moss
,
Phys. Rev. E
64
,
041912
(
2001
).
30.
Q.
Wang
,
G.
Chen
, and
M.
Perc
,
PLoS One
6
(
1
),
e15851
(
2011
).
31.
T.
Yanagita
,
T.
Ichinomiya
, and
Y.
Oyama
,
Phys. Rev. E
72
,
056218
(
2005
).
32.
M.
Rabinovich
,
P.
Varona
,
A. I.
Selverston
, and
H. D. I.
Abarbanel
,
Rev. Mod. Phys.
78
,
1213
(
2006
).
33.
E.
Ullner
,
A.
Zaikin
,
E.
Volkov
, and
J.
Ojalvo
,
Phys. Rev. Lett.
99
,
148103
(
2007
).
34.
Y.
Chen
,
J.
Xiao
,
W.
Liu
,
L.
Li
, and
Y.
Yang
,
Phys. Rev. E
80
,
046206
(
2009
).
35.
C.
Hens
,
P.
Pal
,
S.
Bhowmick
,
P.
Roy
,
A.
Sen
, and
S.
Dana
,
Phys. Rev. E
89
(
3
),
032901
(
2014
).
36.
S.
Astakhov
,
A.
Gulai
,
N.
Fujiwara
, and
J.
Kurths
,
Chaos
26
,
023102
(
2016
).
37.
N.
Zhao
,
Z.
Suna
, and
W.
Xu
,
Eur. Phys. J. B
91
,
20
(
2018
).
38.
A.
S Dixit
and
M. D. S.
Sharma
,
Phys. Lett. A
383
,
125930
(
2019
).
39.
C.
Hens
,
O.
Olusola
,
P.
Pal
, and
S.
Dana
,
Phys. Rev. E
88
(
3
),
034902
(
2013
).
40.
M.
Nandan
,
C.
Hens
,
P.
Pal
, and
S.
Dana
,
Chaos
24
,
043103
(
2014
).
41.
L.
Tsimring
,
N. F.
Rulkov
,
M. L.
Larsen
, and
M.
Gabbay
,
Phys. Rev. Lett.
95
,
014101
(
2005
).
42.
H.
Hong
and
S.
Strogatz
,
Phys. Rev. Lett.
106
,
054102
(
2011
).
43.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
,
Phys. Rev. E
89
,
060901
(
2014
).
44.
B.
Bera
,
C.
Hens
, and
D.
Ghosh
,
Phys. Lett. A
380
(
31–32
),
2366
2373
(
2016
).
45.
A.
Mishra
,
C.
Hens
,
M.
Bose
,
P.
Roy
, and
S.
Dana
,
Phys. Rev. E
92
(
6
),
062920
(
2015
).
46.
A.
Mishra
,
S.
Saha
,
D.
Ghosh
,
G.
Osipov
, and
S.
Dana
,
Opera Med. Physiol.
3
,
14
18
(
2017
).
47.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
,
Chaos
28
,
011103
(
2018
).
48.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
,
Phys. Rev. E
89
,
060901
(
2014
).
49.
E.
Teichmann
and
M.
Rosenblum
,
Chaos
29
,
093124
(
2019
).
50.
I.
Shepelev
and
T.
Vadivasova
,
Nelineinaya Din. [Russ. J. Nonlinear Dyn.]
13
,
317
329
(
2017
).
51.
E.
Rybalova
,
N.
Semenova
,
G.
Strelkova
, and
V.
Anishchenko
,
Eur. Phys. J. Spec. Top.
226
(
9
),
1857
1866
(
2017
).
52.
N.
Semenova
,
T.
Vadivasova
, and
V.
Anishchenko
,
Eur. Phys. J. Spec. Top.
227
,
1173
1183
(
2018
).
53.
I.
Shepelev
,
A.
Bukh
,
S.
Muni
, and
V.
Anishchenko
,
Chaos, Solitons Fractals
135
,
109725
(
2020
).
54.
E.
Rybalova
,
G.
Strelkova
, and
V.
Anishchenko
,
Chaos, Solitons Fractals
115
,
300
305
(
2018
).
55.
E.
Rybalova
,
V.
Anishchenko
,
G.
Strelkova
, and
A.
Zakharova
,
Chaos
29
,
071106
(
2019
).
56.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
,
Chaos
29
,
023122
(
2019
).
57.
E.
Rybalova
,
D.
Klyushina
,
V.
Anishchenko
, and
G.
Strelkova
,
Regul. Chaotic Dyn.
24
,
432
445
(
2019
).
You do not currently have access to this content.