Gap junctions exhibit nonlinear electrical properties that have been hypothesized to be relevant to arrhythmogenicity in a structurally remodeled tissue. Large-scale implementation of gap junction dynamics in 3D propagation models remains challenging. We aim to quantify the impact of nonlinear diffusion during episodes of arrhythmias simulated in a left atrial model. Homogenization of conduction properties in the presence of nonlinear gap junctions was performed by generalizing a previously developed mathematical framework. A monodomain model was solved in which conductivities were time-varying and depended on transjunctional potentials. Gap junction conductances were derived from a simplified Vogel–Weingart model with first-order gating and adjustable time constant. A bilayer interconnected cable model of the left atrium with 100 μm resolution was used. The diffusion matrix was recomputed at each time step according to the state of the gap junctions. Sinus rhythm and atrial fibrillation episodes were simulated in remodeled tissue substrates. Slow conduction was induced by reduced coupling and by diffuse or stringy fibrosis. Simulations starting from the same initial conditions were repeated with linear and nonlinear gap junctions. The discrepancy in activation times between the linear and nonlinear diffusion models was quantified. The results largely validated the linear approximation for conduction velocities >20 cm/s. In very slow conduction substrates, the discrepancy accumulated over time during atrial fibrillation, eventually leading to qualitative differences in propagation patterns, while keeping the descriptive statistics, such as cycle lengths, unchanged. The discrepancy growth rate was increased by impaired conduction, fibrosis, conduction heterogeneity, lateral uncoupling, fast gap junction time constant, and steeper action potential duration restitution.

1.
S.
Weidmann
, “
The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle
,”
J. Physiol.
187
,
323
342
(
1966
).
2.
M. S.
Nielsen
,
L. N.
Axelsen
,
P. L.
Sorgen
,
V.
Verma
,
M.
Delmar
, and
N.-H.
Holstein-Rathlou
, “
Gap junctions
,”
Compr. Physiol.
2
,
1981
2035
(
2012
).
3.
R. G.
Gourdie
,
C. R.
Green
, and
N. J.
Severs
, “
Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy
,”
J. Cell Sci.
99
(
Pt1
),
41
55
(
1991
).
4.
A. G.
Kléber
and
Y.
Rudy
, “
Basic mechanisms of cardiac impulse propagation and associated arrhythmias
,”
Physiol. Rev.
84
,
431
488
(
2004
).
5.
X.
Lin
,
J.
Gemel
,
A.
Glass
,
C. W.
Zemlin
,
E. C.
Beyer
, and
R. D.
Veenstra
, “
Connexin40 and connexin43 determine gating properties of atrial gap junction channels
,”
J. Mol. Cell. Cardiol.
48
,
238
(
2010
).
6.
R. H.
Hoyt
,
M. L.
Cohen
, and
J. E.
Saffitz
, “
Distribution and three-dimensional structure of intercellular junctions in canine myocardium
,”
Circ. Res.
64
,
563
574
(
1989
).
7.
S.
Rohr
, “
Role of gap junctions in the propagation of the cardiac action potential
,”
Cardiovasc. Res.
62
,
309
322
(
2004
).
8.
T. R.
Brown
,
T.
Krogh-Madsen
, and
D. J.
Christini
, “
Illuminating myocyte-fibroblast homotypic and heterotypic gap junction dynamics using dynamic clamp
,”
Biophys. J.
111
,
785
797
(
2016
).
9.
H. J.
Jongsma
and
R.
Wilders
, “
Gap junctions in cardiovascular disease
,”
Circ. Res.
86
,
1193
1197
(
2000
).
10.
S.
Dhein
,
Cardiac Gap Junctions: Physiology, Regulation, Pathophysiology, and Pharmacology
(
Karger Medical and Scientific Publishers
,
1998
).
11.
J. H.
Smith
,
C. R.
Green
,
N. S.
Peters
,
S.
Rothery
, and
N. J.
Severs
, “
Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy
,”
Am. J. Pathol.
139
,
801
821
(
1991
), available at https://pubmed.ncbi.nlm.nih.gov/1656760.
12.
A. L.
Wit
and
N. S.
Peters
, “
The role of gap junctions in the arrhythmias of ischemia and infarction
,”
Heart Rhythm
9
,
308
311
(
2012
).
13.
N. S.
Peters
,
C. R.
Green
,
P. A.
Poole-Wilson
, and
N. J.
Severs
, “
Cardiac arrhythmogenesis and the gap junction
,”
J. Mol. Cell. Cardiol.
27
,
37
44
(
1995
).
14.
M. S.
Spach
,
J. F.
Heidlage
,
P. C.
Dolber
, and
R. C.
Barr
, “
Electrophysiological effects of remodeling cardiac gap junctions and cell size: Experimental and model studies of normal cardiac growth
,”
Circ. Res.
86
,
302
311
(
2000
).
15.
N. J.
Severs
,
A. F.
Bruce
,
E.
Dupont
, and
S.
Rothery
, “
Remodelling of gap junctions and connexin expression in diseased myocardium
,”
Cardiovasc. Res.
80
,
9
19
(
2008
).
16.
J. C.
Neu
and
W.
Krassowska
, “
Homogenization of syncytial tissues
,”
Crit. Rev. Biomed. Eng.
21
(
2
),
137
199
(
1993
), available at https://pubmed.ncbi.nlm.nih.gov/8243090.
17.
P. E.
Hand
and
C. S.
Peskin
, “
Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling
,”
Bull. Math. Biol.
72
,
1408
1424
(
2010
).
18.
B. A. J.
Lawson
,
R. W. D.
Santos
,
I. W.
Turner
,
A.
Bueno-Orovio
,
P.
Burrage
, and
K.
Burrage
, “Homogenisation for the monodomain model in the presence of microscopic fibrotic structures,” arXiv:2012.05527 (2020).
19.
D.
Bruce
,
P.
Pathmanathan
, and
J. P.
Whiteley
, “
Modelling the effect of gap junctions on tissue-level cardiac electrophysiology
,”
Bull. Math. Biol.
76
,
431
454
(
2014
).
20.
R.
Vogel
and
R.
Weingart
, “
Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels
,”
J. Physiol.
510
,
177
189
(
1998
).
21.
A.
Bueno-Orovio
,
D.
Kay
,
V.
Grau
,
B.
Rodriguez
, and
K.
Burrage
, “
Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization
,”
J. R. Soc. Interface
11
,
20140352
(
2014
).
22.
N.
Cusimano
,
A.
Gizzi
,
F. H.
Fenton
,
S.
Filippi
, and
L.
Gerardo-Giorda
, “
Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: A quantitative study
,”
Commun. Nonlinear Sci. Numer. Simul.
84
,
105152
(
2020
).
23.
N.
Cusimano
,
L.
Gerardo-Giorda
, and
A.
Gizzi
, “
A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics
,”
Chaos
31
,
073123
(
2021
).
24.
D. E.
Hurtado
,
S.
Castro
, and
A.
Gizzi
, “
Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach
,”
Comput. Methods Appl. Mech. Eng.
300
,
70
83
(
2016
).
25.
C.
Cherubini
,
S.
Filippi
,
A.
Gizzi
, and
R.
Ruiz-Baier
, “
A note on stress-driven anisotropic diffusion and its role in active deformable media
,”
J. Theor. Biol.
430
,
221
228
(
2017
).
26.
P.
Lenarda
,
A.
Gizzi
, and
M.
Paggi
, “
A modeling framework for electro-mechanical interaction between excitable deformable cells
,”
Eur. J. Mech. A Solids
72
,
374
392
(
2018
).
27.
A.
Loppini
,
A.
Gizzi
,
R.
Ruiz-Baier
,
C.
Cherubini
,
F. H.
Fenton
, and
S.
Filippi
, “
Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics
,”
Front. Physiol.
9
,
1714
(
2018
).
28.
A.
Gizzi
,
A.
Loppini
,
R.
Ruiz-Baier
,
A.
Ippolito
,
A.
Camassa
,
A.
La Camera
,
E.
Emmi
,
L.
Di Perna
,
V.
Garofalo
,
C.
Cherubini
, and
S.
Filippi
, “
Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential
,”
Chaos
27
,
093919
(
2017
).
29.
F. H.
Fenton
,
A.
Gizzi
,
C.
Cherubini
,
N.
Pomella
, and
S.
Filippi
, “
Role of temperature on nonlinear cardiac dynamics
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
87
,
042717
(
2013
).
30.
A.
Loppini
,
A.
Barone
,
A.
Gizzi
,
C.
Cherubini
,
F. H.
Fenton
, and
S.
Filippi
, “
Thermal effects on cardiac alternans onset and development: A spatiotemporal correlation analysis
,”
Phys. Rev. E
103
,
L040201
(
2021
).
31.
M.
Snipas
,
T.
Kraujalis
,
K.
Maciunas
,
L.
Kraujaliene
,
L.
Gudaitis
, and
V. K.
Verselis
, “
Four-state model for simulating kinetic and steady-state voltage-dependent gating of gap junctions
,”
Biophys. J.
119
,
1640
1655
(
2020
).
32.
Y.
Chen-Izu
,
A. P.
Moreno
, and
R. A.
Spangler
, “
Opposing gates model for voltage gating of gap junction channels
,”
Am. J. Physiol. Cell Physiol.
281
,
C1604
C1613
(
2001
).
33.
X.
Lin
,
J.
Gemel
,
E. C.
Beyer
, and
R. D.
Veenstra
, “
Dynamic model for ventricular junctional conductance during the cardiac action potential
,”
Am. J. Physiol. Heart Circ. Physiol.
288
,
H1113
H1123
(
2005
).
34.
C.
Oka
,
H.
Matsuda
,
N.
Sarai
, and
A.
Noma
, “
Modeling the calcium gate of cardiac gap junction channel
,”
J. Physiol. Sci.
56
,
79
85
(
2006
).
35.
A. P.
Henriquez
,
R.
Vogel
,
B. J.
Muller-Borer
,
C. S.
Henriquez
,
R.
Weingart
, and
W. E.
Cascio
, “
Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: A computer simulation study
,”
Biophys. J.
81
,
2112
2121
(
2001
).
36.
D. E.
Hurtado
,
J.
Jilberto
, and
G.
Panasenko
, “
Non-ohmic tissue conduction in cardiac electrophysiology: Upscaling the non-linear voltage-dependent conductance of gap junctions
,”
PLoS Comput. Biol.
16
,
e1007232
(
2020
).
37.
K. H.
Jæger
,
A. G.
Edwards
,
A.
McCulloch
, and
A.
Tveito
, “
Properties of cardiac conduction in a cell-based computational model
,”
PLoS Comput. Biol.
15
,
e1007042
(
2019
).
38.
S. H.
Weinberg
, “
Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions
,”
Chaos
27
,
093908
(
2017
).
39.
J.
Lin
and
J. P.
Keener
, “
Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
20935
20940
(
2010
).
40.
P.-E.
Bécue
,
M.
Potse
, and
Y.
Coudière
, “A three-dimensional computational model of action potential propagation through a network of individual cells,”
Comput. Cardiol.
44
,
057
(
2017
).
41.
P.-E.
Bécue
,
M.
Potse
, and
Y.
Coudière
, “
Microscopic simulation of the cardiac electrophysiology: A study of the influence of different gap junctions models
,”
Comput. Cardiol.
45
,
1
4
(
2018
).
42.
L. M.
Treml
,
E.
Bartocci
, and
A.
Gizzi
, “
Modeling and analysis of cardiac hybrid cellular automata via GPU-accelerated Monte Carlo simulation
,”
Mathematics
9
,
164
(
2021
).
43.
A.
Kaboudian
,
E. M.
Cherry
, and
F. H.
Fenton
, “
Real-time interactive simulations of large-scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications
,”
Sci. Adv.
5
,
eaav6019
(
2019
).
44.
X.
Lin
,
C.
Zemlin
,
J. K.
Hennan
,
J. S.
Petersen
, and
R. D.
Veenstra
, “
Enhancement of ventricular gap-junction coupling by rotigaptide
,”
Cardiovasc. Res.
79
,
416
426
(
2008
).
45.
A.
Saliani
,
A.
Tsikhanovich
, and
V.
Jacquemet
, “
Visualization of interpolated atrial fiber orientation using evenly-spaced streamlines
,”
Comput. Biol. Med.
111
,
103349
(
2019
).
46.
A.
Saliani
and
V.
Jacquemet
, “
Diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
,”
Comput. Cardiol.
47
,
1
4
(
2020
).
47.
A.
Saliani
,
E.
Irakoze
, and
V.
Jacquemet
, “
Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
,”
Europace
23
,
i169
i177
(
2021
).
48.
J. P.
Kucera
,
S.
Rohr
, and
Y.
Rudy
, “
Localization of sodium channels in intercalated disks modulates cardiac conduction
,”
Circ. Res.
91
,
1176
1182
(
2002
).
49.
M.
Courtemanche
,
R. J.
Ramirez
, and
S.
Nattel
, “
Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model
,”
Cardiovasc. Res.
42
,
477
489
(
1999
).
50.
A. J.
Workman
,
K. A.
Kane
, and
A. C.
Rankin
, “
The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation
,”
Cardiovasc. Res.
52
,
226
235
(
2001
).
51.
V.
Jacquemet
,
N.
Virag
,
Z.
Ihara
,
L.
Dang
,
O.
Blanc
,
S.
Zozor
,
J.-M.
Vesin
,
L.
Kappenberger
, and
C.
Henriquez
, “
Study of unipolar electrogram morphology in a computer model of atrial fibrillation
,”
J. Cardiovasc. Electrophysiol.
14
,
S172
S179
(
2003
).
52.
B.-S.
Kim
,
Y.-H.
Kim
,
G.-S.
Hwang
,
H.-N.
Pak
,
S. C.
Lee
,
W. J.
Shim
,
D. J.
Oh
, and
Y. M.
Ro
, “
Action potential duration restitution kinetics in human atrial fibrillation
,”
J. Am. Coll. Cardiol.
39
,
1329
1336
(
2002
).
53.
S.
Labarthe
,
J.
Bayer
,
Y.
Coudière
,
J.
Henry
,
H.
Cochet
,
P.
Jaïs
, and
E.
Vigmond
, “
A bilayer model of human atria: Mathematical background, construction, and assessment
,”
Europace
16
(
Suppl 4
),
iv21
iv29
(
2014
).
54.
A.
Herlin
and
V.
Jacquemet
, “
Eikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation models
,”
Chaos
21
,
043136
(
2011
).
55.
A.
Herlin
and
V.
Jacquemet
, “
Reconstruction of phase maps from the configuration of phase singularities in two-dimensional manifolds
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
85
,
051916
(
2012
).
56.
S.
Gagné
and
V.
Jacquemet
, “
Time resolution for wavefront and phase singularity tracking using activation maps in cardiac propagation models
,”
Chaos
30
,
033132
(
2020
).
57.
P.
Pathmanathan
,
S. K.
Galappaththige
,
J. M.
Cordeiro
,
A.
Kaboudian
,
F. H.
Fenton
, and
R. A.
Gray
, “
Data-driven uncertainty quantification for cardiac electrophysiological models: Impact of physiological variability on action potential and spiral wave dynamics
,”
Front. Physiol.
11
,
585400
(
2020
).
58.
C. D.
Marcotte
,
F. H.
Fenton
,
M. J.
Hoffman
, and
E. M.
Cherry
, “
Robust data assimilation with noise: Applications to cardiac dynamics
,”
Chaos
31
,
013118
(
2021
).
59.
A.
Barone
,
A.
Gizzi
,
F.
Fenton
,
S.
Filippi
, and
A.
Veneziani
, “
Experimental validation of a variational data assimilation procedure for estimating space-dependent cardiac conductivities
,”
Comput. Methods Appl. Mech. Eng.
358
,
112615
(
2020
).
60.
Y.
Rudy
and
W. L.
Quan
, “
A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue
,”
Circ. Res.
61
,
815
823
(
1987
).
61.
F.
Jousset
,
A.
Maguy
,
S.
Rohr
, and
J. P.
Kucera
, “
Myofibroblasts electrotonically coupled to cardiomyocytes alter conduction: Insights at the cellular level from a detailed in silico tissue structure model
,”
Front. Physiol.
7
,
260
(
2016
).
62.
W. F. B.
van der Does
,
C. A.
Houck
,
A.
Heida
,
M. S.
van Schie
,
F. R. N.
van Schaagen
,
Y. J. H. J.
Taverne
,
A. J. J. C.
Bogers
, and
N. M. S.
de Groot
, “
Atrial electrophysiological characteristics of aging
,”
J. Cardiovasc. Electrophysiol.
32
,
903
912
(
2021
).
63.
A.
Heida
,
M. S.
van Schie
,
W. F. B.
van der Does
,
Y. J. H. J.
Taverne
,
A. J. J. C.
Bogers
, and
N. M. S.
de Groot
, “
Reduction of conduction velocity in patients with atrial fibrillation
,”
J. Clin. Med.
10
,
2614
(
2021
).
64.
S.
Zahid
,
H.
Cochet
,
P. M.
Boyle
,
E. L.
Schwarz
,
K. N.
Whyte
,
E. J.
Vigmond
,
R.
Dubois
,
M.
Hocini
,
M.
Haïssaguerre
,
P.
Jaïs
, and
N. A.
Trayanova
, “
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern
,”
Cardiovasc. Res.
110
,
443
454
(
2016
).
65.
R.
Morgan
,
M. A.
Colman
,
H.
Chubb
,
G.
Seemann
, and
O. V.
Aslanidi
, “
Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling
,”
Front. Physiol.
7
,
1352
(
2016
).
66.
B. J.
Hansen
,
J.
Zhao
,
T. A.
Csepe
,
B. T.
Moore
,
N.
Li
,
L. A.
Jayne
,
A.
Kalyanasundaram
,
P.
Lim
,
A.
Bratasz
,
K. A.
Powell
,
O. P.
Simonetti
,
R. S. D.
Higgins
,
A.
Kilic
,
P. J.
Mohler
,
P. M. L.
Janssen
,
R.
Weiss
,
J. D.
Hummel
, and
V. V.
Fedorov
, “
Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts
,”
Eur. Heart J.
36
,
2390
2401
(
2015
).
67.
F. S.
Ng
,
F.
Guerrero
,
V.
Luther
,
M.
Sikkel
, and
P. B.
Lim
, “
Microreentrant left atrial tachycardia circuit mapped with an ultra-high-density mapping system
,”
Heart Rhythm Case Rep.
3
,
224
228
(
2017
).
68.
E. M.
Cherry
,
J. R.
Ehrlich
,
S.
Nattel
, and
F. H.
Fenton
, “
Pulmonary vein reentry–Properties and size matter: Insights from a computational analysis
,”
Heart Rhythm
4
,
1553
1562
(
2007
).
69.
M. L.
Hubbard
and
C. S.
Henriquez
, “
A microstructural model of reentry arising from focal breakthrough at sites of source-load mismatch in a central region of slow conduction
,”
Am. J. Physiol. Heart Circ. Physiol.
306
,
H1341
H1352
(
2014
).
70.
S. F.
Roberts
,
J. G.
Stinstra
, and
C. S.
Henriquez
, “
Effect of nonuniform interstitial space properties on impulse propagation: A discrete multidomain model
,”
Biophys. J.
95
,
3724
3737
(
2008
).
71.
M. L.
Hubbard
and
C. S.
Henriquez
, “
Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue
,”
Am. J. Physiol. Heart Circ. Physiol.
298
,
H1209
H1218
(
2010
).
72.
I.
Lübkemeier
,
R.
Andrié
,
L.
Lickfett
,
F.
Bosen
,
F.
Stöckigt
,
R.
Dobrowolski
,
A. M.
Draffehn
,
J.
Fregeac
,
J. L.
Schultze
,
F. F.
Bukauskas
,
J. W.
Schrickel
, and
K.
Willecke
, “
The connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice
,”
J. Mol. Cell. Cardiol.
65
,
19
32
(
2013
).
73.
P. M.
Boyle
,
S.
Zahid
, and
N. A.
Trayanova
, “
Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia
,”
Europace
18
,
iv136
iv145
(
2016
).
74.
C. H.
Roney
,
J. D.
Bayer
,
S.
Zahid
,
M.
Meo
,
P. M. J.
Boyle
,
N. A.
Trayanova
,
M.
Haïssaguerre
,
R.
Dubois
,
H.
Cochet
, and
E. J.
Vigmond
, “
Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms
,”
Europace
18
,
iv146
iv155
(
2016
).
75.
W. A.
Ramírez
,
A.
Gizzi
,
K. L.
Sack
,
S.
Filippi
,
J. M.
Guccione
, and
D. E.
Hurtado
, “
On the role of ionic modeling on the signature of cardiac arrhythmias for healthy and diseased hearts
,”
Mathematics
8
,
2242
(
2020
).
76.
M.
Hörning
,
F.
Blanchard
,
A.
Isomura
, and
K.
Yoshikawa
, “
Dynamics of spatiotemporal line defects and chaos control in complex excitable systems
,”
Sci. Rep.
7
,
634
(
2017
).
77.
A.
Gizzi
,
E.
Cherry
,
R.
Gilmour
,
S.
Luther
,
S.
Filippi
, and
F.
Fenton
, “
Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue
,”
Front. Physiol.
4
,
71
(
2013
).
You do not currently have access to this content.