Inverse scattering is considered one of the most robust and accurate ultrasonic tomography methods. Most inverse scattering formulations neglect density changes in order to reconstruct sound speed and acoustic attenuation. Some studies available in literature suggest that density distributions can also be recovered using inverse scattering formulations. Two classes of algorithms have been identified. (1) The separation of sound speed and density contributions from reconstructions using constant density inverse scattering algorithms at multiple frequencies. (2) The inversion of the full wave equation including density changes. In this work, the performance of a representative algorithm for each class has been studied for the reconstruction of circular cylinders: the dual frequency distorted Born iterative method (DF-DBIM) and the T-matrix formulation. Root mean square error values lower than 30% were obtained with both algorithms when reconstructing cylinders up to eight wavelengths in diameter with moderate density changes. However, in order to provide accurate reconstructions the DF-DBIM and T-matrix method required very high signal-to-noise ratios and significantly large bandwidths, respectively. These limitations are discussed in the context of practical experimental implementations.

1.
J.
Greenleaf
,
S.
Johnson
,
S.
Lee
,
G.
Herman
, and
E.
Wood
, “
Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections
,”
Acoust. Hologr.
5
,
591
603
(
1974
).
2.
J.
Greenleaf
,
S.
Johnson
,
W.
Samayoa
, and
F.
Duck
, “
Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles
,”
Acoust. Hologr.
6
,
71
90
(
1975
).
3.
B.
Robinson
and
J.
Greenleaf
, “
The scattering of ultrasound by cylinders: Implications for diffraction tomography
,”
J. Acoust. Soc. Am.
80
,
40
49
(
1986
).
4.
W. C.
Chew
and
Y. M.
Wang
, “
Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method
,”
IEEE Trans. Med. Imaging
9
,
218
225
(
1990
).
5.
D.
Borup
,
S.
Johnson
,
W.
Kim
, and
M.
Berggren
, “
Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation
,”
Ultrason. Imaging
14
,
69
85
(
1992
).
6.
W. C.
Chew
and
J. H.
Lin
, “
A frequency-hopping approach for microwave imaging of large inhomogeneous bodies
,”
IEEE Microw. Guid. Wave Lett.
5
,
440
441
(
1995
).
7.
S. A.
Goss
,
R. L.
Johnston
, and
F.
Dunn
, “
Comprehensive compilation of empirical ultrasonic properties of mammalian tissues
,”
J. Acoust. Soc. Am.
64
,
423
457
(
1978
).
8.
S. A.
Goss
,
R. L.
Johnston
, and
F.
Dunn
, “
Compilation of empirical ultrasonic properties of mammalian tissues II
,”
J. Acoust. Soc. Am.
68
,
93
108
(
1980
).
9.
R. J.
Lavarello
and
M. L.
Oelze
, “
A study on the reconstruction of moderate contrast targets using the distorted Born iterative method
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
112
124
(
2008
).
10.
S. A.
Johnson
,
T.
Abbott
,
R.
Bell
,
M.
Berggren
,
D.
Borup
,
D.
Robinson
,
J.
Wiskin
,
S.
Olsen
, and
B.
Hanover
, “
Noninvasive breast tissue characterization using ultrasound speed and attenuation
,”
Acoust. Imaging
28
,
147
154
(
2007
).
11.
M. L.
Oelze
,
W. D.
O'Brien
, Jr.
,
J. P.
Blue
, and
J. F.
Zachary
, “
Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging
,”
IEEE Trans. Med. Imaging
23
,
764
771
(
2004
).
12.
J.
Mamou
,
M. L.
Oelze
,
W. D.
O'Brien
, Jr.
, and
J. F.
Zachary
, “
Identifying ultrasonic scattering sites from three-dimensional impedance maps
,”
J. Acoust. Soc. Am.
117
,
413
423
(
2005
).
13.
S. J.
Norton
, “
Generation of separate density and compressibility images in tissue
,”
Ultrason. Imaging
5
,
240
252
(
1983
).
14.
S.
Mensah
and
J. P.
Lefebvre
, “
Enhanced compressibility tomography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1245
1252
(
1997
).
15.
A. J.
Devaney
, “
Variable density acoustic tomography
,”
J. Acoust. Soc. Am.
78
,
120
130
(
1985
).
16.
M.
Moghaddam
and
W.
Chew
, “
Variable density linear acoustic inverse problem
,”
Ultrason. Imaging
15
,
255
266
(
1993
).
17.
M. A.
Anastasio
,
D.
Shi
, and
T.
Deffieux
, “
Image reconstruction in variable density acoustic tomography
,”
Proc. SPIE
5750
,
326
331
(
2005
).
18.
M. J.
Berggren
,
S. A.
Johnson
,
B. L.
Carruth
,
W. W.
Kim
,
F.
Stenger
, and
P. K.
Kuhn
, “
Ultrasound inverse scattering solutions from transmission and/or reflection data
,”
Proc. SPIE
671
,
114
121
(
1986
).
19.
S.
Kwon
and
M.
Jeong
, “
Ultrasound inverse scattering determination of speed of sound, density and absorption
,”
Proc.-IEEE Ultrason. Symp.
2
,
1631
1634
(
1998
).
20.
S. A.
Johnson
and
F.
Stenger
, “
Ultrasound tomography by Galerkin or moment methods
,” in
Lecture Notes in Medical Informatics
, edited by
O.
Nalcioglu
and
Z.
Cho
(
Springer-Verlag
,
New York, NY
,
1984
), Vol.
23
, pp.
254
275
.
21.
J.
Lin
and
W.
Chew
, “
Ultrasonic imaging by local shape function method with CGFFT
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
43
,
956
969
(
1996
).
22.
K. W. A.
van Dongen
and
W. M. D.
Wright
, “
A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles
,”
J. Acoust. Soc. Am.
121
,
1538
1549
(
2007
).
23.
T.
Cavicchi
and
W. D.
O’Brien
, Jr.
, “
Acoustic scattering of an incident cylindrical wave by an infinite circular cylinder
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
78
80
(
1988
).
24.
T.
Cavicchi
,
S.
Johnson
, and
W. D.
O’Brien
, Jr.
, “
Application of the sinc basis moment method to the reconstruction of infinite circular cylinders
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
22
33
(
1988
).
25.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
Princeton, NJ
,
1968
).
26.
S. A.
Johnson
,
F.
Stenger
,
C.
Wilcox
,
J.
Ball
, and
M. J.
Berggren
, “
Wave equations and inverse solutions for soft tissue
,”
Acoust. Imaging
11
,
409
424
(
1982
).
27.
S.
Pourjavid
and
O. J.
Tretiak
, “
Numerical solution of the direct scattering problem through the transformed acoustical wave equation
,”
J. Acoust. Soc. Am.
91
,
639
645
(
1992
).
28.
W. C.
Karl
and
M.
Cetin
, “
Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization
,”
IEEE Trans. Image Process.
10
,
623
631
(
2001
).
29.
R.
Akar
and
C. R.
Vogel
, “
Analysis of bounded variation penalty methods for ill-posed problems
,”
Inverse Probl.
10
,
1217
1229
(
1994
).
30.
G.
Pelekanos
,
A.
Abubakar
, and
P. M.
van den Berg
, “
Contrast source inversion methods in elastodynamics
,”
J. Acoust. Soc. Am.
114
,
2825
2834
(
2003
).
31.
W. C.
Chew
,
Waves and Fields in Inhomogeneous Media
(
IEEE
,
Piscataway, NJ
,
1995
).
32.
T. J.
Cui
,
W. C.
Chew
,
X. X.
Yin
, and
W.
Hong
, “
Study of resolution and super resolution in electromagnetic imaging for half-space problems
,”
IEEE Trans. Antennas Propag.
52
,
1398
1411
(
2004
).
33.
X.
Zhang
,
S.
Broschat
, and
P.
Flynn
, “
A comparison of material classification techniques for ultrasound inverse imaging
,”
J. Acoust. Soc. Am.
111
,
457
467
(
2002
).
You do not currently have access to this content.