Since hyperglycemia is involved in the “aspirin resistance” occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5–25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1–300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA–induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA–induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

Atherothrombotic cardiovascular events are the leading cause of morbidity and mortality in type 2 diabetes (1). Platelet hyperactivity, a critical factor in the pathogenesis of atherothrombosis (2), plays a major role in this phenomenon (3). Thus, an aggressive antiaggregating treatment with aspirin is strongly recommended for diabetic patients (4). The aspirin-induced prevention of cardiovascular events, however, is lower in diabetes than in the general population (57). Among the mechanisms involved in aspirin resistance are the accelerated half-life of circulating platelets, the occurrence of a proinflammatory and prothrombotic status, the presence of an increased oxidative stress responsible for platelet activation through isoprostanes, and the use of inadequate aspirin doses (810).

Type 2 diabetes is frequently associated with obesity and insulin resistance; the role of these two conditions on platelet dysfunction and on aspirin resistance has been reviewed (9,11,12). The main feature of diabetes, however, is hyperglycemia, which is involved in the pathogenesis of vascular complications (13); the direct role played by high glucose on platelet sensitivity to aspirin has not been fully investigated thus far. Experimental and clinical investigations have mainly focused on chronic hyperglycemia (1416); a few studies have evaluated the effects of acute platelet exposure to high glucose in in vitro models (1719).

Since viability of platelets in vitro is limited to a few hours, studies in vitro are designed only to evaluate whether acute increases in glucose concentrations influence platelet responses to aspirin. This is a relevant topic because the so-called “stress hyperglycemia” worsens the prognosis of acute coronary syndromes (20), and postprandial glycemic excursions are considered a strong cardiovascular risk factor (21); among the pathophysiologic mechanisms involved, the role of oxidative stress has been underlined (21). In type 2 diabetes, postprandial hyperglycemia predicts cardiovascular morbidity and all-cause mortality even when glycated hemoglobin is taken into account (22).

The classic mechanism by which aspirin interferes with platelet responses is the prevention of thromboxane A2 (TXA2) formation by an irreversible acetylation of the catalytic site of cyclooxygenase-1 (23,24). Besides this pivotal action, aspirin increases platelet bioavailability and synthesis of nitric oxide (NO) (2527) via acetylation of the constitutive nitric oxide synthase (cNOS) (28). As previously reviewed (29), NO is deeply involved in platelet antiaggregation through the synthesis of cGMP and the consequent activation of the cGMP-dependent protein kinase (PKG); the cGMP/PKG system modulates basic mechanisms of platelet activation, such as agonist-induced increases of cytosolic calcium and cytoskeleton protein contraction. A relevant target of PKG is the focal adhesion protein vasodilator-stimulated phosphoprotein (VASP), which PKG preferentially activates via phosphorylation at serine 239 (30); thus, VASP is a mediator of cGMP action involved in platelet inhibitory pathways. Impaired NO synthesis and/or sensitivity plays a crucial role in the platelet dysfunction described in diabetic patients (31).

Short-term incubations of platelets with high glucose in vitro decrease the effects of aspirin on platelet GPIIb-IIIa and P-selectin expression (18) and reduce the aspirin-induced inhibition of platelet aggregation (17,19). It has not been evaluated thus far, however, whether high glucose impairs the ability of aspirin to inhibit thromboxane synthesis or activate the NO pathway; the second phenomenon could be hypothesized because NOS inhibition prevents the effects of high glucose on the aspirin antiaggregating properties (19).

The aims of this study are therefore to investigate whether a short-term platelet exposure to high glucose in vitro modifies the aspirin effects on thromboxane synthesis and/or on the NO/cGMP/PKG pathway activation.

Chemicals.

ADP, amifostine, sodium arachidonate (NaA), trisodium citrate, d-glucose, l-monomethylarginine (l-NMMA), methylene blue (MB), HEPES-Na, PBS, Tween-20, indomethacin, and mannitol were obtained from Sigma-Aldrich (St. Louis, MO). l-[2,3,4,5-3H]Arginine monohydrochloride was obtained from GE Healthcare Europe GmbH (Milan, Italy). The source of the specific antibodies for Western blotting is shown in the section concerning Western blot analysis. Lysine acetylsalicylate (L-ASA) was provided by sanofi-aventis (Milan, Italy). We preferred L-ASA to ASA because it is soluble in water instead of in DMSO or ethanol, which influence platelet function; L-ASA is a soluble salt of acetylsalicylic acid (ASA) that is converted to ASA and is widely used in clinical practice because it presents the powerful antiplatelet effect of ASA with fewer gastrointestinal side effects (32).

Subjects and platelet preparation.

After overnight fasting, we studied 60 healthy volunteers (34 men and 26 women; age = 23.8 ± 0.7 years; BMI = 22.4 ± 0.4 kg/m2), nonsmokers, who denied taking drugs in the previous 2 weeks and had normal fasting and 2-h plasma glucose concentrations after an oral glucose tolerance test, normal insulin sensitivity (HOMA IR = 1.7 ± 0.05), and arterial blood pressure values <140/90 mmHg. They gave informed consent before investigation, and the ethics committee of our hospital approved the study. Venous blood samples were withdrawn without stasis and anticoagulated with 3.8% trisodium citrate, pH 7.4 (volume for volume [v/v], 1/9), for aggregation studies or with citrate-dextrose solution (ACD; v/v, 1/6) for experiments on washed platelets (WPs). Platelet counts were performed on a hematology system of the Bayer Corporation (Tarrytown, NY). Platelet-rich plasma (PRP) was obtained by using the Platelet Function Centrifuge (BioData Corporation, Horsham, PA), designed to provide a rapid separation of PRP by a centrifugation for 30 s and of platelet-poor plasma by a further centrifugation for 120 s. To prepare WPs, ACD-anticoagulated PRP was submitted to further centrifugation at 2,000 g for 10 min. The pellet was washed two times with HEPES-Na buffer (10 mmol/L HEPES Na, 140 mmol/L NaCl, 2.1 mmol/L, MgSO4, 5 mmol/L glucose, pH 7.4). WPs are usually used to measure the NO/cGMP/PKG signaling in platelets (33). They present some degree of activation; actually, the concentrations of the platelet activation marker sP-selectin (ELISA kit; Bender MedSystems GmbH, Vienna, Austria) were similar in PRP and in surnatants of WPs (24.2 ± 1.9 and 25.7 ± 1.7 ng/108 platelets; n = 7; P = NS), indicating that WPs still release P-selectin after removal of the protein contained in the plasma fraction of PRP.

Study design.

Whole blood and platelet samples (PRP and/or WPs) were exposed for 60 min to different d-glucose concentrations (5, 15, and 25 mmol/L) and then incubated for 30 min with L-ASA (1–300 μmol/L). Some experiments have been repeated with 20-min preincubations with the antioxidant agent amifostine (200 μmol/L), the NOS inhibitor l-NMMA (100 μmol/L), or the guanylate cyclase inhibitor MB (50 μmol/L). Some experiments have been carried out with the iso-osmolar control mannitol instead of glucose.

In the different samples, we measured 1) platelet reactivity in high shear-stress conditions in WB; 2) platelet aggregation in PRP in response to NaA (1 mmol/L) or ADP (10 μmol/L); 3) TXB2 concentrations in response to NaA (1 mmol/L) or ADP (10 μmol/L) both in PRP at the end of each aggregation test and in resting WPs; 4) NOS activity in resting WPs; and 5) cGMP production in unstirred PRP and VASP phosphorylated at serine 239 in WPs.

Platelet reactivity in high shear-stress conditions.

Platelet responses were evaluated in whole blood by a Platelet Function Analyzer (PFA-100; Siemens Healthcare Diagnostic Products GmbH, Marburg, Germany), which measures platelet responses under standardized high-shear conditions as a function of the time needed to form a platelet plug, named “closure time” (seconds), within an aperture cut into a platelet-reactive membrane coated with collagen and epinephrine (CEPI) (34).

Platelet aggregation studies.

Platelet aggregation studies were carried out in PRP by following light-scattering changes as described by Born (35) using an eight-channel aggregation system (Platelet Aggregation Profiler, Model PAP-8; BioData Corporation). Platelet aggregation in response to agonists was reported as maximal aggregation. Each aggregation test was recorded for 5 min after the addition of the agonist.

TXB2 synthesis.

In PRP, TXB2 levels were measured at the end of the aggregation tests (i.e., 5 min after the addition of agonists) after blocking platelet responses with indomethacin (10 μmol/L) and 100 μL of ACD; each sample was then spun at 8,000 g for 2 min, and supernatants were stored and frozen at −80°C.

TXB2 was also measured in WPs resuspended in HEPES buffer containing 0.38 mg/mL fibrinogen in the presence of a 60-min preincubation with 5 or 25 mmol/L glucose. WPs were then exposed to L-ASA (300 μmol/L for 30 min) and stimulated by 1 mmol/L NaA, or by 10 μmol/L ADP for 5 min at 37°C. The reaction was stopped by centrifugation at 2,300 g for 5 min at 4°C, and the supernatants were stored and frozen at −80°C. TXB2 was measured by using the EIA kit (Cayman Chemical Company, Ann Arbor, MI).

Platelet NOS activity.

NOS activity was measured by evaluating the conversion of l-[3H]arginine to l-[3H]citrulline (36). Actually, NOS induces the conversion of l-arginine to l-citrulline and to NO with a 1:1 stoichiometry (36). In brief, WPs were resuspended for 60 min in HEPES buffer in the presence of 5 and 25 mmol/L glucose and then exposed to L-ASA (300 μmol/L for 30 min) together with 1 μCi l-[3H]arginine (in HEPES-Na containing CaCl2); platelet reactions were stopped by centrifugation at 2,000 g for 10 min; platelet lysates were mixed with Dowex cation exchange resin (Na+ form) to absorb l-arginine. l-[3H]citrulline in the supernatant was measured by liquid scintillation counting. Results were expressed as pmol l-citrulline/min/mg protein.

cGMP production.

cGMP was measured in unstirred PRP samples (500 μL) incubated at 37°C for 60 min with 5 and 25 mmol/L glucose and then exposed to L-ASA (300 μmol/L for 30 min). Platelet reactions were stopped with 30% trichloroacetic acid (100 μL). Precipitated proteins were removed by 20-min centrifugation at 2,000 g at 4°C. After the addition of 1 mol/L of HCl (100 μL), the supernatant was submitted to 10 extractions with ethylic ether to remove trichloroacetic acid. Samples were then lyophilized and kept at −80°C until determination. cGMP measurement was carried out using a radioimmunoassay kit (Immuno Biological Laboratories, Hamburg, Germany). Data are expressed as pmol/109 platelets.

VASP phosphorylation at serine 239.

For detection of VASP phosphorylated at serine 239, WPs were incubated with 300 μmol/L L-ASA for 30 min in the presence of a 60-min preincubation with 5 and 25 mmol/L glucose and processed as previously described (37). After Western blot, membranes were incubated with a monoclonal antibody recognizing VASP phosphorylated at serine 239 (1:1,000; Merck KGaA, Darmstadt, Germany) and then with horseradish peroxidase–conjugated rabbit anti-mouse IgG (1:3,000; Santa Cruz Biotechnology, Santa Cruz, CA). After additional washes, membranes were submitted to chemiluminescence (GE Healthcare Europe GmbH), and the density of bands was analyzed with Kodak 1D Image Analysis software.

Statistical analysis.

Values in the text and figures are means ± SEM. Statistical analysis was performed with different approaches in the different protocols according to the scale type of data: 1) when only two measures had to be compared, we used Student t test for paired data when appropriate; 2) results concerning PFA-100 have been evaluated with the nonparametric Wilcoxon signed rank test because closure time is a harmonic variable with a maximum of 300 s, which does not fluctuate proportionally within the scale; 3) results concerning platelet aggregation responses and agonist-induced thromboxane synthesis have been evaluated with a parametric generalized linear model two-factor within subject ANOVA for repeated measures (n glucose concentration × m L-ASA concentration). All data analyses were performed using SPSS Statistics version 17.0 (SPSS 2008).

Platelet function evaluated by PFA-100.

Figure 1 shows the L-ASA effects on PFA-100 CEPI closure time in the presence of three different glucose concentrations (n = 34). L-ASA increased time closure (Wilcoxon signed rank test P < 0.0001 between every L-ASA concentration), but glucose levels did not modify closure time responses in the presence of the different L-ASA concentrations.

FIG. 1.

Effect of platelet exposure to different L-ASA concentrations on closure time of PFA-100 CEPI in the presence of different glucose concentrations. Box plots range from the first to the third quartile; bold line in the boxes represents the median. Wiskers range from the minimum to the maximum of the measured values in the absence of outliers. Dots represent outliers with values between 1.5 and 3 (interquartile range); asterisks represent extreme outliers. Statistical analysis, carried out by Wilcoxon signed rank test, shows that glucose (5, 15, and 25 mmol/L; n = 34) did not modify closure time responses in the presence of the different L-ASA concentrations.

FIG. 1.

Effect of platelet exposure to different L-ASA concentrations on closure time of PFA-100 CEPI in the presence of different glucose concentrations. Box plots range from the first to the third quartile; bold line in the boxes represents the median. Wiskers range from the minimum to the maximum of the measured values in the absence of outliers. Dots represent outliers with values between 1.5 and 3 (interquartile range); asterisks represent extreme outliers. Statistical analysis, carried out by Wilcoxon signed rank test, shows that glucose (5, 15, and 25 mmol/L; n = 34) did not modify closure time responses in the presence of the different L-ASA concentrations.

Close modal

Platelet aggregation

In response to NaA.

Glucose 25 mmol/L attenuated the inhibitory effect of L-ASA on NaA-induced platelet aggregation (n = 24). In particular, a two-factor within subject ANOVA 3 × 5 (glucose concentration [5, 15, and 25 mmol/L] × L-ASA concentration [0, 1, 5, 50, and 100 μmol/L]) shows that 1) in the absence of L-ASA, high glucose did not modify platelet aggregation; 2) the main effect (i.e., on the whole sample) of L-ASA was significant starting from the concentration of 5 μmol/L (P < 0.0001 for all the concentrations vs. baseline); 3) the inhibitory effect of L-ASA was significant starting from the concentration of 1 μmol/L in the presence of 5 mmol/L glucose (the worst P value =0.009 vs. baseline) and starting from 5 μmol/L L-ASA in the presence of 15 and 25 mmol/L glucose (P < 0.0001 for all concentrations vs. baseline); and 4) the inhibitory effects of 5 and of 50 μmol/L L-ASA did not differ in the presence of 5 vs. 15 mmol/L glucose, whereas it differed in the presence of 5 vs. 25 mmol/L glucose (P < 0.0001) and 15 vs. 25 mmol/L glucose (P < 0.0001) (Fig. 2A).

FIG. 2.

Effect of platelet exposure to different glucose concentrations on the L-ASA–induced inhibition of platelet aggregation responses to NaA and ADP. Statistical analysis, carried out by two-factor within subject ANOVA for repeated measures, shows that the response to L-ASA on platelet aggregation induced by NaA (A) and ADP (B) did not differ between 5 and 15 mmol/L glucose, whereas it differed between 5 and 25 mmol/L glucose (P < 0.0001 for both agonists) and between 15 and 25 mmol/L glucose (P < 0.0001 for both agonists; n = 24).

FIG. 2.

Effect of platelet exposure to different glucose concentrations on the L-ASA–induced inhibition of platelet aggregation responses to NaA and ADP. Statistical analysis, carried out by two-factor within subject ANOVA for repeated measures, shows that the response to L-ASA on platelet aggregation induced by NaA (A) and ADP (B) did not differ between 5 and 15 mmol/L glucose, whereas it differed between 5 and 25 mmol/L glucose (P < 0.0001 for both agonists) and between 15 and 25 mmol/L glucose (P < 0.0001 for both agonists; n = 24).

Close modal

In the presence of 20 mmol/L mannitol, the inhibitory effect of L-ASA on NaA-induced platelet aggregation was not different from that observed in the presence of 5 mmol/L glucose (n = 8; P = NS for all L-ASA concentrations). In particular, the inhibition exerted by 50 μmol/L L-ASA was 52.44 ± 2.85% with 20 mmol/L mannitol vs. 54.25 ± 1.42% with 5 mmol/L glucose.

In response to ADP.

Glucose (25 mmol/L) attenuated the inhibitory effect of L-ASA on ADP-induced platelet aggregation (n = 24). In particular, a two-factor within subject ANOVA 3 × 4 (glucose concentration [5, 15, and 25 mmol/L] × L-ASA concentration [0, 75, 150, and 300 μmol/L]) shows that 1) in the absence of L-ASA, high glucose did not modify platelet aggregation; 2) the concentration-dependent inhibitory main effect (i.e., on the whole sample) of L-ASA on ADP-induced aggregation was significant starting from the concentration of 75 μmol/L (P < 0.0001 for all the concentrations vs. baseline); 3) the inhibitory effect of L-ASA was significant starting from the concentration of 75 μmol/L in the presence of 5 and 15 mmol/L glucose (P < 0.0001 for all concentrations vs. baseline) but only from 150 μmol/L in the presence of 25 mmol/L glucose (P < 0.0001 for 150 and 300 μmol/L L-ASA vs. baseline); and 4) the inhibitory effects of 75, 150, and 300 μmol/L L-ASA did not differ in the presence of 5 vs. 15 mmol/L glucose, whereas they differed in the presence of 5 vs. 25 mmol/L glucose (P < 0.0001) and 15 vs. 25 mmol/L glucose (P < 0.0001) (Fig. 2B).

In the presence of 20 mmol/L mannitol, the inhibitory effect of L-ASA on ADP-induced platelet aggregation was not different from that observed in the presence of 5 mmol/L glucose (n = 8; P = NS for all L-ASA concentrations). In particular, the inhibition exerted by 150 μmol/L L-ASA was 35.10 ± 1.98% with 20 mmol/L mannitol vs. 36.25 ± 2.42% with 5 mmol/L glucose.

The influence of amifostine.

The results are shown in Fig. 3. In the presence of the radical oxygen scavenger amifostine, the L-ASA–induced inhibition on platelet aggregation of NaA and ADP did not differ in experiments performed at 5 vs. 25 mmol/L glucose (n = 9). Amifostine, therefore, reversed the inhibitory effect exerted by 25 mmol/L glucose on the L-ASA effects, without modifying platelet aggregation in the absence of L-ASA or the L-ASA effect in the presence of 5 mmol/L glucose.

FIG. 3.

Effect of preincubation with amifostine on the L-ASA–induced inhibition of platelet aggregation in response to NaA and ADP in the presence of different glucose concentrations. At 5 mmol/L glucose (n = 9): amifostine vs. baseline and amifostine + L-ASA vs. L-ASA alone, P = NS for platelet aggregation induced by both NaA (A) and ADP (B). At 25 mmol/L glucose (n = 9): amifostine vs. baseline, P = NS for platelet aggregation induced by both NaA (A) and ADP (B); amifostine + L-ASA vs. L-ASA alone, P = 0.002 (Student paired t test) for platelet aggregation induced by NaA (A) and P < 0.0001 (Student paired t test) for platelet aggregation induced by ADP (B).

FIG. 3.

Effect of preincubation with amifostine on the L-ASA–induced inhibition of platelet aggregation in response to NaA and ADP in the presence of different glucose concentrations. At 5 mmol/L glucose (n = 9): amifostine vs. baseline and amifostine + L-ASA vs. L-ASA alone, P = NS for platelet aggregation induced by both NaA (A) and ADP (B). At 25 mmol/L glucose (n = 9): amifostine vs. baseline, P = NS for platelet aggregation induced by both NaA (A) and ADP (B); amifostine + L-ASA vs. L-ASA alone, P = 0.002 (Student paired t test) for platelet aggregation induced by NaA (A) and P < 0.0001 (Student paired t test) for platelet aggregation induced by ADP (B).

Close modal

Thromboxane synthesis

In PRP.

As shown in Fig. 4A and B, L-ASA induced a concentration-dependent reduction of TXB2 measured at the end of both NaA- and ADP-elicited aggregation (n = 24, main effect of L-ASA; P < 0.0001 for both agonists); TXB2 values did not differ between 5 and 25 mmol/L glucose either in the absence of L-ASA or in the presence of each L-ASA concentration.

FIG. 4.

Effect of platelet exposure to different glucose concentrations on the L-ASA–induced inhibition of thromboxane synthesis in response to NaA and to ADP. Statistical analysis, carried out by two-factor within subject ANOVA for repeated measures, shows that TXB2 values did not differ between 5 and 25 mmol/L glucose either in the absence of L-ASA or in the presence of each L-ASA concentration for both NaA (n = 24) (A) and ADP (n = 24) (B).

FIG. 4.

Effect of platelet exposure to different glucose concentrations on the L-ASA–induced inhibition of thromboxane synthesis in response to NaA and to ADP. Statistical analysis, carried out by two-factor within subject ANOVA for repeated measures, shows that TXB2 values did not differ between 5 and 25 mmol/L glucose either in the absence of L-ASA or in the presence of each L-ASA concentration for both NaA (n = 24) (A) and ADP (n = 24) (B).

Close modal

In WPs.

In unstirred WPs (n = 8), baseline TXB2 concentrations were 27.9 ± 0.9 and 27.03 ± 0.31 ng/mL in the presence of 5 and 25 mmol/L glucose, respectively (P = NS); high glucose failed to modify the TXB2 response to NaA and ADP, both in the presence and in the absence of L-ASA. In particular, 1) after NaA stimulation, TXB2 concentrations in the presence of 5 and 25 mmol/L glucose were 56.8 ± 3.9 and 56.9 ± 3.3 ng/mL without L-ASA (P = NS), 27.9 ± 2.8 and 29.8 ± 2.5 ng/mL with L-ASA (P = NS); 2) after ADP stimulation, TXB2 concentrations in the presence of 5 and 25 mmol/L glucose were 31.9 ± 2.5 and 31.7 ± 2.7 ng/mL without L-ASA (P = NS), 17.5 ± 1.4 and 17.1 ± 1.7 ng/mL with L-ASA (P = NS).

Activation of the NO/cGMP/PKG pathway

Platelet NOS activity.

The effect of L-ASA on platelet NOS activity in the presence of 5 and 25 mmol/L glucose is shown in Fig. 5 (n = 12). In experiments carried out at 5 mmol/L glucose, 300 μmol/L L-ASA increased platelet synthesis of NO (P < 0.0001), whereas in experiments carried out at 25 mmol/L glucose, the NO values without and with 300 μmol/L L-ASA did not differ. Amifostine restored the L-ASA ability to increase NO synthesis in experiments carried out at 25 mmol/L glucose (P < 0.04 vs. amifostine alone), without modifying NO synthesis in the absence of L-ASA or the L-ASA effect at 5 mmol/L glucose.

FIG. 5.

Effect of L-ASA on platelet NOS activity in the presence of different glucose concentrations with and without preincubation with amifostine. At 5 mmol/L glucose (n = 12): L-ASA vs. baseline, P < 0.0001; amifostine vs. baseline and amifostine + L-ASA vs. L-ASA alone, P = NS (Student paired t test). At 25 mmol/L glucose (n = 12): L-ASA vs. baseline, P = NS; amifostine vs. baseline, P = NS; amifostine + L-ASA vs. L-ASA alone, P < 0.05; amifostine + L-ASA vs. amifostine alone, P < 0.04 (Student paired t test).

FIG. 5.

Effect of L-ASA on platelet NOS activity in the presence of different glucose concentrations with and without preincubation with amifostine. At 5 mmol/L glucose (n = 12): L-ASA vs. baseline, P < 0.0001; amifostine vs. baseline and amifostine + L-ASA vs. L-ASA alone, P = NS (Student paired t test). At 25 mmol/L glucose (n = 12): L-ASA vs. baseline, P = NS; amifostine vs. baseline, P = NS; amifostine + L-ASA vs. L-ASA alone, P < 0.05; amifostine + L-ASA vs. amifostine alone, P < 0.04 (Student paired t test).

Close modal

In experiments carried out at 5 mmol/L glucose in the presence of the NOS inhibitor l-NMMA, NO values without and with 300 μmol/L L-ASA did not differ (12.5 ± 1.3 and 14.4 ± 1.4 fmol [3H]citrulline/min/mg protein, respectively) (n = 12).

Finally, in experiments carried out in the presence of 20 mmol/L mannitol, 300 μmol/L L-ASA increased NO synthesis from 11.8 ± 2.8 to 25.3 ± 3.10 [3H]citrulline/min/mg protein (P < 0.0001), reaching values that did not differ from those measured at 5 mmol/L glucose, which were higher than those measured at 25 mmol/L glucose (n = 12; P < 0.0001).

cGMP production.

Data are shown in Fig. 6. In the presence of 5 mmol/L glucose, 300 μmol/L L-ASA increased intraplatelet cGMP (n = 12; P < 0.003); this effect is attributable to the NO-induced activation of guanylate cyclase, as it was completely prevented by both l-NMMA and MB.

FIG. 6.

Effect of L-ASA on platelet cGMP in the presence of different glucose concentrations without and with the guanylate cyclase inhibitor MB and the NOS inhibitor l-NMMA. At 5 mmol/L glucose (n = 12): L-ASA vs. baseline, P < 0.003; MB + L-ASA vs. baseline, P = NS; l-NMMA + L-ASA vs. baseline, P = NS (Student paired t test). At 25 mmol/L glucose (n = 12): L-ASA vs. baseline, without or with MB or l-NMMA, P = NS (Student paired t test).

FIG. 6.

Effect of L-ASA on platelet cGMP in the presence of different glucose concentrations without and with the guanylate cyclase inhibitor MB and the NOS inhibitor l-NMMA. At 5 mmol/L glucose (n = 12): L-ASA vs. baseline, P < 0.003; MB + L-ASA vs. baseline, P = NS; l-NMMA + L-ASA vs. baseline, P = NS (Student paired t test). At 25 mmol/L glucose (n = 12): L-ASA vs. baseline, without or with MB or l-NMMA, P = NS (Student paired t test).

Close modal

The L-ASA effect on cGMP was absent in experiments carried out at 25 mmol/L glucose (n = 12). The inhibitory effect of high glucose was independent of its osmotic action because in the presence of 20 mmol/L mannitol L-ASA induced a significant increase of cGMP from 13.1 ± 2.5 to 27.5 ± 2.4 pmol/109 platelets (P < 0.0001); the cGMP values reached after L-ASA incubation in the presence of 20 mmol/L mannitol did not differ from those reached in the presence of 5 mmol/L glucose and were significantly higher than those reached in the presence of 25 mmol/L glucose (P < 0.0001).

VASP phosphorylation at serine 239.

As shown in Fig. 7, in the presence of 5 mmol/L glucose, a 30-min platelet exposure to 300 μmol/L L-ASA caused a significant increase of VASP phosphorylated at serine 239 (n = 6; P < 0.001); this effect was absent in the presence of 25 mmol/L glucose (n = 6; P = NS vs. without L-ASA).

FIG. 7.

Effect of L-ASA on platelet VASP phosphorylation at serine 239 in the presence of different glucose concentrations. At 5 mmol/L glucose (n = 6): L-ASA vs. baseline, P < 0.001 (Student paired t test). At 25 mmol/L glucose (n = 6): L-ASA vs. baseline, P = NS (Student paired t test).

FIG. 7.

Effect of L-ASA on platelet VASP phosphorylation at serine 239 in the presence of different glucose concentrations. At 5 mmol/L glucose (n = 6): L-ASA vs. baseline, P < 0.001 (Student paired t test). At 25 mmol/L glucose (n = 6): L-ASA vs. baseline, P = NS (Student paired t test).

Close modal

This study shows that in vitro exposure to high glucose (i.e., 25 mmol/L) of platelets from healthy subjects reduces the antiaggregating action of aspirin, an effect blunted by the antioxidant agent amifostine. It also shows that high glucose does not affect the ability of aspirin to inhibit thromboxane synthesis but impairs the ability of aspirin to activate the NO/cGMP/PKG pathway. Furthermore, it demonstrates that high glucose per se does not influence platelet aggregation in response to agonists, thromboxane synthesis, and the NO/cGMP/PKG pathway.

Thus, high glucose reduces the antiaggregating properties of aspirin only at very high concentrations; the extent of inhibition, although significant, is modest. In our experimental conditions, we did not observe the dramatic dose-dependent inhibition of platelet sensitivity to aspirin described by other authors (17,19).

Is it possible to translate results obtained in vitro to in vivo conditions? It is interesting to observe that the lack of effects on platelet aggregation and platelet sensitivity to aspirin exerted by a 15 mmol/L glucose incubation in our in vitro study is in agreement with the results of studies carried out in vivo; actually, when acute hyperglycemia (∼14 mmol/L) was induced by the hyperglycemic clamp in type 2 diabetic patients, glucose did not affect platelet sensitivity to agonists and did not modify the antiaggregating effects of aspirin (38).

In our study, however, in vitro exposure to high glucose failed to increase the shear stress–induced platelet activation evaluated by PFA-100 even at 25 mmol/L, whereas acute hyperglycemia induced in vivo by the hyperglycemic clamp at ∼14 mmol/L increased the shear stress–induced platelet activation (39); this discrepancy is likely attributable to the fact that the results obtained by the hyperglycemic clamp correlated with the increase of circulating levels of von Willebrand factor, which reflects the effects of high glucose on vascular endothelium in vivo (38).

Thus, the translation of results obtained with glucose incubated in vitro to in vivo conditions of acute hyperglycemia is not immediate. Actually, the so-called “hyperglycemic spikes” may affect other cells in vivo (such as endothelial cells and leukocytes), which can influence platelet function.

In our study, glucose impairs the L-ASA effects at 25 mmol/L. We observed that when PRP from aspirin-sensitive nondiabetic subjects on a chronic aspirin treatment is incubated in vitro with this glucose concentration, there is an increase of platelet responses to agonists, showing that high glucose reduces the aspirin action also when the drug is assumed in vivo (40). No in vivo study, however, has thus far evaluated the influence on platelets of a short-term increase of glucose, reaching the concentration of 25 mmol/L. This phenomenon occurs in clinical practice in type 1 and, more rarely, type 2 diabetes in high-stress conditions (infections, acute coronary syndromes, etc.), and therefore in states of severe insulin deficiency and resistance, and is accompanied by profound hormonal and metabolic abnormalities that can influence platelets and other cells in addition to high glucose. Further studies are needed to explore the changes in aspirin sensitivity occurring in these in vivo settings. The contribution of our in vitro investigation is to show the effects of high glucose isolated from those of other metabolic and hormonal molecules altered in acute hyperglycemic conditions and the effects on platelets isolated from those occurring in other cells able to influence platelet function.

From the biochemical point of view, our study originally shows that platelet exposure to high glucose does not modify either baseline thromboxane production or the ability of aspirin to inhibit agonist-induced thromboxane synthesis but blunts the aspirin-induced activation of the NO/cGMP/PKG pathway.

Furthermore, our study provides the first demonstration that in human platelets aspirin increases not only NO synthesis and cGMP concentrations but also VASP phosphorylation at serine 239, and that high glucose inhibits the activating phosphorylation of VASP induced by aspirin.

The inhibitory effect of high glucose on the aspirin-induced activation of the NO pathway is not due to an osmotic mechanism, because it is not reproduced by iso-osmolar mannitol. On the other hand, the ability of the antioxidant agent amifostine to restore the aspirin-induced increase of NO production in the presence of high glucose strongly supports the role of oxidative stress, which is deeply involved in the reduction of NO synthesis/bioavailability in platelets (41). Amifostine, as is well known, is an organic thiophosphate prodrug that acts as a potent intracellular scavenger of free radicals (42). Since in our study high glucose does not influence the NO/cGMP/PKG pathway per se, in keeping with a previous observation (43), these results indicate that, by oxidative stress, it interplays with the mechanism by which aspirin activates the same pathway. Because aspirin activates cNOS by acetylation (28), it could be hypothesized that reactive oxygen species interfere with this acetylation process.

In conclusion, the current study demonstrates that a short-term platelet exposure to very high glucose concentrations modestly inhibits platelet responses to agonists by a mechanism likely attributable to oxidative stress; furthermore, it shows for the first time that high glucose does not modify the ability of aspirin to reduce thromboxane synthesis but inhibits the ability of aspirin to activate the antiaggregating pathway NO/cGMP/PKG. The short-term viability of platelets for in vitro studies does not allow long-term incubations; thus, our results provide information concerning mechanisms involved in the effects of “stress hyperglycemia” (20) or “postprandial spikes” (21), without excluding that smaller glucose concentrations could chronically affect platelet function playing a role in the “aspirin resistance” described in diabetes, a condition in which an effective platelet antiaggregation is of crucial importance (44).

This study was supported by a grant to M.T. from the European Foundation for the Study of Diabetes/sanofi-aventis European Programme (2008) entitled “Macrovascular Complications and Blood Glucose Abnormalities.”

No potential conflicts of interest relevant to this article were reported.

I.R., M.T., and G.A. conceived and designed the study, collected and interpreted data, and wrote the manuscript. M.V., C.B., L.M., and G.D. contributed to data collection and results interpretation. A.P. contributed to results interpretation and statistical analysis. F.C. contributed to results interpretation and discussion. M.T. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

1.
Stamler
JM
,
Vaccaro
O
,
Neaton
JD
,
Wentworth
D
.
Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial
.
Diabetes Care
1993
;
16
:
434
444
[PubMed]
2.
Davì
G
,
Patrono
C
.
Platelet activation and atherothrombosis
.
N Engl J Med
2007
;
357
:
2482
2494
[PubMed]
3.
Vinik
AI
,
Erbas
T
,
Park
TS
,
Nolan
R
,
Pittenger
GL
.
Platelet dysfunction in type 2 diabetes
.
Diabetes Care
2001
;
24
:
1476
1485
[PubMed]
4.
American Diabetes Association
.
Standards of medical care in diabetes—2011
.
Diabetes Care
2011
;
34
(
Suppl. 1
):
S11
S61
[PubMed]
5.
Ajjan
R
,
Storey
RF
,
Grant
PJ
.
Aspirin resistance and diabetes mellitus
.
Diabetologia
2008
;
51
:
385
390
[PubMed]
6.
Angiolillo
DJ
.
Antiplatelet therapy in diabetes: efficacy and limitations of current treatment strategies and future directions
.
Diabetes Care
2009
;
32
:
531
540
[PubMed]
7.
De Berardis
G
,
Sacco
M
,
Strippoli
GF
, et al
.
Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials
.
BMJ
2009
;
339
:
b4531
[PubMed]
8.
Patrono
C
,
Rocca
B
.
Aspirin: promise and resistance in the new millennium
.
Arterioscler Thromb Vasc Biol
2008
;
28
:
s25
s32
[PubMed]
9.
Anfossi
G
,
Russo
I
,
Trovati
M
.
Resistance to aspirin and thienopyridines in diabetes mellitus and metabolic syndrome
.
Curr Vasc Pharmacol
2008
;
6
:
313
328
[PubMed]
10.
Sweeny
JM
,
Gorog
DA
,
Fuster
V
.
Antiplatelet drug ‘resistance’. Part 1: mechanisms and clinical measurements
.
Nat Rev Cardiol
2009
;
6
:
273
282
[PubMed]
11.
Anfossi
G
,
Russo
I
,
Trovati
M
.
Platelet dysfunction in central obesity
.
Nutr Metab Cardiovasc Dis
2009
;
19
:
440
449
[PubMed]
12.
Santilli
F
,
Vazzana
N
,
Liani
R
,
Guagnano
MT
,
Davì
G
.
Platelet activation in obesity and metabolic syndrome
.
Obes Rev
2012
;13:27–42
[PubMed]
13.
Brownlee
M
.
The pathobiology of diabetic complications: a unifying mechanism
.
Diabetes
2005
;
54
:
1615
1625
[PubMed]
14.
Watala
C
,
Golanski
J
,
Pluta
J
, et al
.
Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin)-its relation to metabolic control
.
Thromb Res
2004
;
113
:
101
113
[PubMed]
15.
Watala
C
,
Ulicna
O
,
Golanski
J
, et al
.
High glucose contributes to aspirin insensitivity in streptozotocin-diabetic rats: a multiparametric aggregation study
.
Blood Coagul Fibrinolysis
2006
;
17
:
113
124
16.
Cohen
HW
,
Crandall
JP
,
Hailpern
SM
,
Billett
HH
.
Aspirin resistance associated with HbA1c and obesity in diabetic patients
.
J Diabetes Complications
2008
;
22
:
224
228
[PubMed]
17.
De La Cruz
JP
,
Arrebola
MM
,
Villalobos
MA
, et al
.
Influence of glucose concentration on the effects of aspirin, ticlopidine and clopidogrel on platelet function and platelet-subendothelium interaction
.
Eur J Pharmacol
2004
;
484
:
19
27
[PubMed]
18.
Le Guyader
A
,
Pacheco
G
,
Seaver
N
,
Davis-Gorman
G
,
Copeland
J
,
McDonagh
PF
.
Inhibition of platelet GPIIb-IIIa and P-selectin expression by aspirin is impaired by stress hyperglycemia
.
J Diabetes Complications
2009
;
23
:
65
70
[PubMed]
19.
Kobzar
G
,
Mardla
V
,
Samel
N
.
Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors
.
Platelets
2011
;
22
:
338
344
[PubMed]
20.
Capes
SE
,
Hunt
D
,
Malmberg
K
,
Gerstein
HC
.
Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview
.
Lancet
2000
;
355
:
773
778
[PubMed]
21.
Ceriello
A
,
Colagiuri
S
.
International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations
.
Diabet Med
2008
;
25
:
1151
1156
[PubMed]
22.
Cavalot
F
,
Pagliarino
A
,
Valle
M
, et al
.
Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: lessons from the San Luigi Gonzaga Diabetes Study
.
Diabetes Care
2011
;
34
:
2237
2243
[PubMed]
23.
Awtry
EH
,
Loscalzo
J
.
Aspirin
.
Circulation
2000
;
101
:
1206
1218
[PubMed]
24.
Patrono
C
,
Coller
B
,
Dalen
JE
, et al
.
Platelet-active drugs : the relationships among dose, effectiveness, and side effects
.
Chest
2001
;
119
(
Suppl.
):
39S
63S
[PubMed]
25.
O’Kane
PD
,
Queen
LR
,
Ji
Y
, et al
.
Aspirin modifies nitric oxide synthase activity in platelets: effects of acute versus chronic aspirin treatment
.
Cardiovasc Res
2003
;
59
:
152
159
[PubMed]
26.
Chakraborty
K
,
Khan
GA
,
Banerjee
P
,
Ray
U
,
Sinha
AK
.
Inhibition of human blood platelet aggregation and the stimulation of nitric oxide synthesis by aspirin
.
Platelets
2003
;
14
:
421
427
[PubMed]
27.
Madajka
M
,
Korda
M
,
White
J
,
Malinski
T
.
Effect of aspirin on constitutive nitric oxide synthase and the biovailability of NO
.
Thromb Res
2003
;
110
:
317
321
[PubMed]
28.
O’Kane
P
,
Xie
L
,
Liu
Z
, et al
.
Aspirin acetylates nitric oxide synthase type 3 in platelets thereby increasing its activity
.
Cardiovasc Res
2009
;
83
:
123
130
[PubMed]
29.
Gkaliagkousi
E
,
Ritter
J
,
Ferro
A
.
Platelet-derived nitric oxide signaling and regulation
.
Circ Res
2007
;
101
:
654
662
[PubMed]
30.
Butt
E
,
Abel
K
,
Krieger
M
,
Palm
D
,
Hoppe
V
,
Walter
U
.
cAMP- and cGMP-dependent protein kinase in vitro and in intact human platelets
.
J Biol Chem
1994
;
269
:
14509
14517
[PubMed]
31.
Anfossi
G
,
Mularoni
EM
,
Burzacca
S
, et al
.
Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM
.
Diabetes Care
1998
;
21
:
121
126
[PubMed]
32.
Majluf-Cruz
A
,
Chavez-Ochoa
AR
,
Majluf-Cruz
K
, et al
.
Effect of combined administration of clopidogrel and lysine acetylsalicylate versus clopidogrel and aspirin on platelet aggregation and activated GPIIb/IIIa expression in healthy volunteers
.
Platelets
2006
;
17
:
105
107
[PubMed]
33.
Kobsar
A
,
Koessler
J
,
Kehrer
L
,
Gambaryan
S
,
Walter
U
.
The thrombin inhibitors hirudin and Refludan(®) activate the soluble guanylyl cyclase and the cGMP pathway in washed human platelets
.
Thromb Haemost
2012
;
107
:
521
529
[PubMed]
34.
Favaloro
EJ
.
Clinical utility of the PFA-100
.
Semin Thromb Hemost
2008
;
34
:
709
733
[PubMed]
35.
Born
GVR
.
Aggregation of blood platelets by adenosine diphosphate and its reversal
.
Nature
1962
;
194
:
927
929
[PubMed]
36.
Queen
LR
,
Xu
B
,
Horinouchi
K
,
Fisher
I
,
Ferro
A
.
β(2)-adrenoceptors activate nitric oxide synthase in human platelets
.
Circ Res
2000
;
87
:
39
44
[PubMed]
37.
Russo
I
,
Del Mese
P
,
Doronzo
G
, et al
.
Platelet resistance to the antiaggregatory cyclic nucleotides in central obesity involves reduced phosphorylation of vasodilator-stimulated phosphoprotein
.
Clin Chem
2007
;
53
:
1053
1060
[PubMed]
38.
Gresele
P
,
Marzotti
S
,
Guglielmini
G
, et al
.
Hyperglycemia-induced platelet activation in type 2 diabetes is resistant to aspirin but not to a nitric oxide-donating agent
.
Diabetes Care
2010
;
33
:
1262
1268
[PubMed]
39.
Gresele
P
,
Guglielmini
G
,
De Angelis
M
, et al
.
Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus
.
J Am Coll Cardiol
2003
;
41
:
1013
1020
[PubMed]
40.
Russo
I
,
Frascaroli
C
,
Mattiello
L
, et al
.
Aspirin resistant subjects present a proinflammatory milieu with an increased oxidative stress: in these conditions, high glucose fails to influence platelet responses to agonists
.
Diabetologia
2011
;
54
:
S36
[Abstract]
41.
Anfossi
G
,
Russo
I
,
Massucco
P
,
Mattiello
L
,
Trovati
M
.
Platelet resistance to the antiaggregating effect of N-acetyl-L-cysteine in obese, insulin-resistant subjects
.
Thromb Res
2003
;
110
:
39
46
[PubMed]
42.
Marzatico
F
,
Porta
C
,
Moroni
M
, et al
.
In vitro antioxidant properties of amifostine (WR-2721, Ethyol)
.
Cancer Chemother Pharmacol
2000
;
45
:
172
176
[PubMed]
43.
Massucco
P
,
Mattiello
L
,
Russo
I
, et al
.
High glucose rapidly activates the nitric oxide/cyclic nucleotide pathway in human platelets via an osmotic mechanism
.
Thromb Haemost
2005
;
93
:
517
526
[PubMed]
44.
Colwell
JA
,
Nesto
RW
.
The platelet in diabetes: focus on prevention of ischemic events
.
Diabetes Care
2003
;
26
:
2181
2188
[PubMed]
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.