Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;81(4):1939-48.
doi: 10.1152/jn.1999.81.4.1939.

Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation

Affiliations
Free article

Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation

D Sun et al. J Neurophysiol. 1999 Apr.
Free article

Abstract

Na+-K+-2Cl- cotransporter has been suggested to contribute to active intracellular Cl- accumulation in neurons at both early developmental and adult stages. In this report, we extensively characterized the Na+-K+-2Cl- cotransporter in primary culture of cortical neurons that were dissected from cerebral cortex of rat fetus at embryonic day 17. The Na+-K+-2Cl- cotransporter was expressed abundantly in soma and dendritic processes of cortical neurons evaluated by immunocytochemical staining. Western blot analysis revealed that an approximately 145-kDa cotransporter protein was present in cerebral cortex at the early postnatal (P0-P9) and adult stages. There was a time-dependent upregulation of the cotransporter activity in cortical neurons during the early postnatal development. A substantial level of bumetanide-sensitive K+ influx was detected in neurons cultured for 4-8 days in vitro (DIV 4-8). The cotransporter activity was increased significantly at DIV 12 and maintained at a steady level throughout DIV 12-14. Bumetanide-sensitive K+ influx was abolished completely in the absence of either extracellular Na+ or Cl-. Opening of gamma-aminobutyric acid (GABA)-activated Cl- channel or depletion of intracellular Cl- significantly stimulated the cotransporter activity. Moreover, the cotransporter activity was elevated significantly by activation of N-methyl-D-aspartate ionotropic glutamate receptor via a Ca2+-dependent mechanism. These results imply that the inwardly directed Na+-K+-2Cl- cotransporter is important in active accumulation of intracellular Cl- and may be responsible for GABA-mediated excitatory effect in immature cortical neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-