Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;278(4):F676-83.
doi: 10.1152/ajprenal.2000.278.4.F676.

AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells

Affiliations
Free article

AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells

V Scivittaro et al. Am J Physiol Renal Physiol. 2000 Apr.
Free article

Abstract

Increased activation of specific protein kinase C (PKC) isoforms and increased nonenzymatic glycation of intracellular and extracellular proteins [the accumulation of advanced glycation end products (AGEs)] are major mechanistic pathways implicated in the pathogenesis of diabetic complications. Blocking PKC-beta(II) has been shown to decrease albuminuria in animal models of diabetes. To demonstrate a direct relationship between AGEs and the induction and translocation of PKC-beta(II), studies were carried out in rat neonatal mesangial cells, known to express PKC-beta(II) in association with rapid proliferation in post-natal development. Oxidative stress was studied by using the fluorescent probe dichlorfluorescein diacetate. Translocation of PKC-beta(II) was demonstrated by using immunofluorescence and Western blotting of fractionated mesangial cells. Induction of intracellular oxidative stress, increase in intracellular calcium, and cytosol to membrane PKC-beta(II) translocation (with no change in PKC-alpha) were demonstrated after exposure to AGE-rich proteins. These data support the hypothesis that AGEs cause mesangial oxidative stress and alterations in PKC-beta(II), changes that may ultimately contribute to phenotypic abnormalities associated with diabetic nephropathy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-