Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 22;275(38):29318-23.
doi: 10.1074/jbc.M002725200.

Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation

Affiliations
Free article

Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation

P Yi et al. J Biol Chem. .
Free article

Abstract

S-Adenosylmethionine and S-adenosylhomocysteine (SAH), as the substrate and product of essential cellular methyltransferase reactions, are important metabolic indicators of cellular methylation status. Chronic elevation of SAH, secondary to the homocysteine-mediated reversal of the SAH hydrolase reaction, reduces methylation of DNA, RNA, proteins, and phospholipids. High affinity binding of SAH to the active site of cellular methyltransferases results in product inhibition of the enzyme. Using a sensitive new high pressure liquid chromatography method with coulometric electrochemical detection, plasma SAH levels in healthy young women were found to increase linearly with mild elevation in homocysteine levels (r = 0.73; p < 0.001); however, S-adenosylmethionine levels were not affected. Plasma SAH levels were positively correlated with intracellular lymphocyte SAH levels (r = 0.81; p < 0.001) and also with lymphocyte DNA hypomethylation (r = 0.74, p < 0.001). These results suggest that chronic elevation in plasma homocysteine levels, such as those associated with nutritional deficiencies or genetic polymorphisms in the folate pathway, may have an indirect and negative effect on cellular methylation reactions through a concomitant increase in intracellular SAH levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-