Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 22;40(20):5854-60.
doi: 10.1021/bi010340c.

The C2B domain of synaptotagmin I is a Ca2+-binding module

Affiliations

The C2B domain of synaptotagmin I is a Ca2+-binding module

J Ubach et al. Biochemistry. .

Abstract

Synaptotagmin I is a synaptic vesicle protein that contains two C(2) domains and acts as a Ca(2+) sensor in neurotransmitter release. The Ca(2+)-binding properties of the synaptotagmin I C(2)A domain have been well characterized, but those of the C(2)B domain are unclear. The C(2)B domain was previously found to pull down synaptotagmin I from brain homogenates in a Ca(2+)-dependent manner, leading to an attractive model whereby Ca(2+)-dependent multimerization of synaptotagmin I via the C(2)B domain participates in fusion pore formation. However, contradictory results have been described in studies of Ca(2+)-dependent C(2)B domain dimerization, as well as in analyses of other C(2)B domain interactions. To shed light on these issues, the C(2)B domain has now been studied using biophysical techniques. The recombinant C(2)B domain expressed as a GST fusion protein and isolated by affinity chromatography contains tightly bound bacterial contaminants despite being electrophoretically pure. The contaminants bind to a polybasic sequence that has been previously implicated in several C(2)B domain interactions, including Ca(2+)-dependent dimerization. NMR experiments show that the pure recombinant C(2)B domain binds Ca(2+) directly but does not dimerize upon Ca(2+) binding. In contrast, a cytoplasmic fragment of native synaptotagmin I from brain homogenates, which includes the C(2)A and C(2)B domains, participates in a high molecular weight complex as a function of Ca(2+). These results show that the recombinant C(2)B domain of synaptotagmin I is a monomeric, autonomously folded Ca(2+)-binding module and suggest that a potential function of synaptotagmin I multimerization in fusion pore formation does not involve a direct interaction between C(2)B domains or requires a posttranslational modification.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-