Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;21(3):319-21.
doi: 10.1038/nbt788. Epub 2003 Feb 10.

Homologous recombination in human embryonic stem cells

Affiliations

Homologous recombination in human embryonic stem cells

Thomas P Zwaka et al. Nat Biotechnol. 2003 Mar.

Abstract

Homologous recombination applied to mouse embryonic stem (ES) cells has revolutionized the study of gene function in mammals. Although most often used to generate knockout mice, homologous recombination has also been applied in mouse ES cells allowed to differentiate in vitro. Homologous recombination is an essential technique if human ES cells are to fulfill their promise as a basic research tool. It also has important implications for ES cell-based transplantation and gene therapies. Significant differences between mouse and human ES cells have hampered the development of homologous recombination in human ES cells. High, stable transfection efficiencies in human ES cells have been difficult to achieve, and, in particular, electroporation protocols established for mouse ES cells work poorly in human ES cells. Also, in contrast to their murine counterparts, human ES cells cannot be cloned efficiently from single cells, making it difficult to screen for rare recombination events. Here we report an electroporation approach, based on the physical characteristics of human ES cells, that we used to successfully target HPRT1, the gene encoding hypoxanthine phosphoribosyltransferase-1 (HPRT1), and POU5F1, the gene encoding octamer-binding transcription factor 4 (Oct4; also known as POU domain, class 5, transcription factor 1 (POU5F1)).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

-