Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;24(1):65-73.

Involvement of the mitogen-activated protein kinase kinase 2 in the induction of cell dissociation in pancreatic cancer

Affiliations
  • PMID: 14654942

Involvement of the mitogen-activated protein kinase kinase 2 in the induction of cell dissociation in pancreatic cancer

Xiaodong Tan et al. Int J Oncol. 2004 Jan.

Abstract

In our previous investigation, mitogen-activated protein kinase kinase 2 (MEK2) was detected as a factor which was correlated to the potential of invasion-metastasis. In this study, the immunocytochemical, immunohistochemical and mRNA expressions of MEK2 were examined in pancreatic cancer cell lines and tissue samples, respectively. Constitutive expressions of MEK2 and phosphorylated MEK (p-MEK) were observed in PC-1.0 and ASPC-1 cells, which exhibited a growth pattern of single cells, whereas the relevant expressions were quite faint in PC-1 cells and CAPAN-2 cells, which exhibited a growth pattern of island-like clonies. Simultaneous inductions of MEK2 expressions and cell dissociation were observed after the treatment with a conditioned medium (CM) of PC-1.0 cells. The expression of MEK2 and p-MEK were reduced and the cell aggregation was found in PC-1.0 and ASPC-1 cells after U0126 (a MEK inhibitor) treatment. In vivo, both the MEK2 and p-MEK overexpressed in human pancreatic cancer tissues and p-MEK was found to be more strongly expressed in the invasive front than that in the center of tumor (P<0.05). MEK2 is closely related to pancreatic cancer cell dissociation. MEK2 activation is probably involved in the first step of the cascade in the invasion-metastasis of pancreatic cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

-