Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 10;492(1):13-9.
doi: 10.1016/j.ejphar.2004.03.057.

Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism

Affiliations

Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism

Dilip K Deka et al. Eur J Pharmacol. .

Abstract

In the present investigation, we used standard patch clamp techniques to test whether nitric oxide (NO) generation has any role to play with either activation or inhibition of ATP-sensitive (KATP) channels in guinea-pig urinary bladder. We found that NO generation leads to activation of KATP channels through a cyclic guanosine monophosphate (c-GMP)-dependent protein kinase. 3-Morpholinosydnonimine (SIN, 100 microM) potentiated activation of an inward current in whole cell patch clamp experiments. Glibenclamide (10 microM) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) inhibited the SIN-activated current. Both in cell-attached and in inside out patches, SIN (200 microM) potentiated KATP channel activity, and the increased channel activity in inside out patches was suppressed by glibenclamide (50 microM), ATP (1 mM) and (9s,10R,12R)-2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12,-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6] benzodiazocine-10-carboxylic acid, methyl ester (KT-5823, 10 nM). 8-Br-cGMP (100 microM) increased the KATP channel activity in cell-attached patches, and this was suppressed by glibenclamide (50 microM). These results suggest that the NO-c-GMP-PKG pathway contributes to activation of K(ATP) channels in guinea-pig urinary bladder myocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-