Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;287(5):R1014-30.
doi: 10.1152/ajpregu.00124.2004.

Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology

Affiliations
Free article

Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology

Jian-Mei Li et al. Am J Physiol Regul Integr Comp Physiol. 2004 Nov.
Free article

Abstract

The endothelial generation of reactive oxygen species (ROS) is important both physiologically and in the pathogenesis of many cardiovascular disorders. ROS generated by endothelial cells include superoxide (O2-*), hydrogen peroxide (H2O2), peroxynitrite (ONOO-*), nitric oxide (NO), and hydroxyl (*OH) radicals. The O2-* radical, the focus of the current review, may have several effects either directly or through the generation of other radicals, e.g., H2O2 and ONOO-*. These effects include 1) rapid inactivation of the potent signaling molecule and endothelium-derived relaxing factor NO, leading to endothelial dysfunction; 2) the mediation of signal transduction leading to altered gene transcription and protein and enzyme activities ("redox signaling"); and 3) oxidative damage. Multiple enzymes can generate O2-*, notably xanthine oxidase, uncoupled NO synthase, and mitochondria. Recent studies indicate that a major source of endothelial O2-* involved in redox signaling is a multicomponent phagocyte-type NADPH oxidase that is subject to specific regulation by stimuli such as oscillatory shear stress, hypoxia, angiotensin II, growth factors, cytokines, and hyperlipidemia. Depending on the level of oxidants generated and the relative balance between pro- and antioxidant pathways, ROS may be involved in cell growth, hypertrophy, apoptosis, endothelial activation, and adhesivity, for example, in diabetes, hypertension, atherosclerosis, heart failure, and ischemia-reperfusion. This article reviews our current knowledge regarding the sources of endothelial ROS generation, their regulation, their involvement in redox signaling, and the relevance of enhanced ROS generation and redox signaling to the pathophysiology of cardiovascular disorders where endothelial activation and dysfunction are implicated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-