Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Dec;34(12):2111-6.
doi: 10.1124/dmd.106.011460. Epub 2006 Sep 22.

Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate

Affiliations
Comparative Study

Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate

Joshua D Lambert et al. Drug Metab Dispos. 2006 Dec.

Abstract

(-)-Epigallocatechin-3-gallate (EGCG) is the widely studied catechin in green tea (Camellia sinensis). Previously, we have reported the low bioavailability of EGCG in rats and mice. As a means of improving the bioavailability of EGCG, we have prepared a peracetylated EGCG derivative (AcEGCG) and herein report its growth inhibitory activity and cellular uptake in vitro, as well as bioavailability in mice. AcEGCG exhibited enhanced growth inhibitory activity relative to EGCG in both KYSE150 human esophageal (IC50 = 10 versus 20 microM) and HCT116 human colon cancer cells (IC50 = 32 versus 45 microM). AcEGCG was rapidly converted to EGCG by HCT116 cells, and treatment of cells with AcEGCG resulted in a 2.8- to 30-fold greater intracellular concentration of EGCG as compared with treatment with EGCG. AcEGCG was also more potent than EGCG at inhibiting nitric oxide production (4.4-fold) and arachidonic acid release (2.0-fold) from lipopolysaccharide-stimulated RAW264.7 murine macrophages. Intragastric administration of AcEGCG to CF-1 mice resulted in higher bioavailability compared with administration of equimolar doses of EGCG. The plasma area under the curve from 0 to infinity (AUC0-->infinity) of total EGCG was 465.0 and 194.6 [(microg/ml) . min] from the administration of AcEGCG and EGCG, respectively. The t1/2 of EGCG was also increased following administration of AcEGCG compared with EGCG (441.0 versus 200.3 min). The AUC0-->infinity and t1/2 were also increased in small intestinal (2.8- and 4.3-fold, respectively) and colonic tissues (2.4- and 6.0-fold, respectively). These data suggest that acetylation represents a means of increasing the biological potency in vitro, increasing the bioavailability of EGCG in vivo, and may improve cancer-preventive activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources

-