Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;29(5):1247-52.

Epigallocatechin-3-gallate inhibits the PDGF-induced VEGF expression in human vascular smooth muscle cells via blocking PDGF receptor and Erk-1/2

Affiliations
  • PMID: 17016658

Epigallocatechin-3-gallate inhibits the PDGF-induced VEGF expression in human vascular smooth muscle cells via blocking PDGF receptor and Erk-1/2

Jung S Park et al. Int J Oncol. 2006 Nov.

Abstract

Platelet-derived growth factor (PDGF) has been known to induce vascular endothelial growth factor (VEGF) expression in human vascular smooth muscle cells (hVSMCs). We previously reported that Erk-1/2 and AP-1 pathways are crucial in the PDGF-induced VEGF expression in hVSMCs . In this study, we investigated the effect of epigallocatechin-3-gallate (EGCG), the major green tea catechin, on the PDGF-induced VEGF expression in hVSMCs and the underlying mechanisms. EGCG were found to inhibit dose-dependently the VEGF expression and activation of PDGF receptor, Erk-1/2 and AP-1 induced by PDGF. In addition, cell free studies demonstrated that EGCG could directly inhibit the Erk-1/2 activity. Conditioned media from the hVSMCs treated with PDGF could remarkably stimulate the in vitro growth of human umbilical vein endothelial cells (HUVECs) but the media from the EGCG-pretreated hVSMCs lost its stimulatory activity for HUVEC proliferation. These results suggest that EGCG may exert the anti-angiogenic effect by inhibiting the PDGF-induced VEGF expression at multiple signaling levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources

-