Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 15;8(6):909-15.
doi: 10.4161/cc.8.6.7933. Epub 2009 Mar 26.

Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro

Affiliations

Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro

Irina N Alimova et al. Cell Cycle. .

Abstract

The anti-diabetic drug metformin reduces human cancer incidence and improves the survival of cancer patients, including those with breast cancer. We studied the activity of metformin against diverse molecular subtypes of breast cancer cell lines in vitro. Metformin showed biological activity against all estrogen receptor (ER) positive and negative, erbB2 normal and abnormal breast cancer cell lines tested. It inhibited cellular proliferation, reduced colony formation and caused partial cell cycle arrest at the G(1) checkpoint. Metformin did not induce apoptosis (as measured by DNA fragmentation and PARP cleavage) in luminal A, B or erbB2 subtype breast cancer cell lines. At the molecular level, metformin treatment was associated with a reduction of cyclin D1 and E2F1 expression with no changes in p27(kip1) or p21(waf1). It inhibited mitogen activated protein kinase (MAPK) and Akt activity, as well as the mammalian target of rapamycin (mTOR) in both ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells. In erbB2-overexpressing breast cancer cell lines, metformin reduced erbB2 expression at higher concentrations, and at lower concentrations within the therapeutic range, it inhibited erbB2 tyrosine kinase activity evidenced by a reduction of phosphorylated erbB2 (P-erbB2) at both auto- and Src- phosphorylation sites. These data suggest that metformin may have potential therapeutic utility against ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

-