Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2009 Sep;90(3):519-26.
doi: 10.3945/ajcn.2009.27834. Epub 2009 Jul 29.

Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet

Affiliations
Free article
Randomized Controlled Trial

Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet

Margriet A B Veldhorst et al. Am J Clin Nutr. 2009 Sep.
Free article

Abstract

Background: High-protein diets have been shown to increase energy expenditure (EE).

Objective: The objective was to study whether a high-protein, carbohydrate-free diet (H diet) increases gluconeogenesis and whether this can explain the increase in EE.

Design: Ten healthy men with a mean (+/-SEM) body mass index (in kg/m(2)) of 23.0 +/- 0.8 and age of 23 +/- 1 y received an isoenergetic H diet (H condition; 30%, 0%, and 70% of energy from protein, carbohydrate, and fat, respectively) or a normal-protein diet (N condition; 12%, 55%, and 33% of energy from protein, carbohydrate, and fat, respectively) for 1.5 d according to a randomized crossover design, and EE was measured in a respiration chamber. Endogenous glucose production (EGP) and fractional gluconeogenesis were measured via infusion of [6,6-(2)H(2)]glucose and ingestion of (2)H(2)O; absolute gluconeogenesis was calculated by multiplying fractional gluconeogenesis by EGP. Body glycogen stores were lowered at the start of the intervention with an exhaustive glycogen-lowering exercise test.

Results: EGP was lower in the H condition than in the N condition (181 +/- 9 compared with 226 +/- 9 g/d; P < 0.001), whereas fractional gluconeogenesis was higher (0.95 +/- 0.04 compared with 0.64 +/- 0.03; P < 0.001) and absolute gluconeogenesis tended to be higher (171 +/- 10 compared with 145 +/- 10 g/d; P = 0.06) in the H condition than in the N condition. EE (resting metabolic rate) was greater in the H condition than in the N condition (8.46 +/- 0.23 compared with 8.12 +/- 0.31 MJ/d; P < 0.05). The increase in EE was a function of the increase in gluconeogenesis (DeltaEE = 0.007 x Deltagluconeogenesis - 0.038; r = 0.70, R(2) = 0.49, P < 0.05). The contribution of Deltagluconeogenesis to DeltaEE was 42%; the energy cost of gluconeogenesis was 33% (95% CI: 16%, 50%).

Conclusions: Forty-two percent of the increase in energy expenditure after the H diet was explained by the increase in gluconeogenesis. The cost of gluconeogenesis was 33% of the energy content of the produced glucose.

PubMed Disclaimer

Similar articles

Cited by

Publication types

-