Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Dec;47(4):315-23.
doi: 10.1007/s00592-010-0209-1. Epub 2010 Jul 17.

STZ-induced skeletal muscle atrophy is associated with increased p65 content and downregulation of insulin pathway without NF-κB canonical cascade activation

Affiliations
Comparative Study

STZ-induced skeletal muscle atrophy is associated with increased p65 content and downregulation of insulin pathway without NF-κB canonical cascade activation

Andrew R Kelleher et al. Acta Diabetol. 2010 Dec.

Abstract

Type 1 diabetes mellitus (DM)-induced skeletal muscle atrophy is associated with an increased incidence in morbidity and mortality. Although the precise mechanism of diabetes-induced skeletal muscle atrophy remains to be established, several NF-κB-dependent pro-inflammatory genes have been identified as potential therapeutic targets. Moreover, activation of NF-κB has previously been shown to be required for cytokine-induced loss of skeletal muscle proteins. Therefore, we investigated activation of the NF-κB canonical pathway, concomitant to insulin signaling activation in skeletal muscle from diabetes-induced rats. Ten rats injected with streptozotocin (STZ) 4 weeks prior to tissue extraction were compared to 10 control rats. Using total, cytosolic and nuclear protein extracts from hindlimb muscles: soleus (SOL), extensor digitorum longus (EDL), gastrocnemius (GM) and liver tissue, we assessed key proteins important for the activation of both NF-κB and insulin pathways. Insulin blood concentration decreased to 3.9 ± 1.2 mU/ml following STZ-injection resulting in hyperglycemia (17.9 ± 0.7 mmol/l). SOL, EDL and GM mass decreased, and liver mass increased following STZ injection. NF-κB/p65 content in SOL, GM and liver increased in STZ-injected rats, without any change in IκB degradation or IKK phosphorylation. Muscle NF-κB/p65 remained bound to IκB and did not translocate or bind to DNA. Although the canonical NF-κB cascade was not activated, STZ induced a decrease in insulin pathway proteins including insulin receptor (IR) and substrate (IRS-1) content and phosphorylation compared to control animals. A downregulation of insulin pathway proteins and muscle atrophy occurred in response to STZ administration, and despite increased p65 content, STZ treatment did not activate the canonical NF-κB cascade. Therefore, it is unlikely that hyperglycemia initiates skeletal muscle atrophy via activation of the NF-κB canonical pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

-