Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2014 Nov 12;312(18):1870-9.
doi: 10.1001/jama.2014.14601.

Molecular findings among patients referred for clinical whole-exome sequencing

Affiliations
Observational Study

Molecular findings among patients referred for clinical whole-exome sequencing

Yaping Yang et al. JAMA. .

Abstract

Importance: Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders.

Objective: To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome.

Design, setting, and patients: Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014. Whole-exome sequencing tests were performed at a clinical genetics laboratory in the United States. Results were reported by clinical molecular geneticists certified by the American Board of Medical Genetics and Genomics. Tests were ordered by the patient's physician. The patients were primarily pediatric (1756 [88%]; mean age, 6 years; 888 females [44%], 1101 males [55%], and 11 fetuses [1% gender unknown]), demonstrating diverse clinical manifestations most often including nervous system dysfunction such as developmental delay.

Main outcomes and measures: Whole-exome sequencing diagnosis rate overall and by phenotypic category, mode of inheritance, spectrum of genetic events, and reporting of incidental findings.

Results: A molecular diagnosis was reported for 504 patients (25.2%) with 58% of the diagnostic mutations not previously reported. Molecular diagnosis rates for each phenotypic category were 143/526 (27.2%; 95% CI, 23.5%-31.2%) for the neurological group, 282/1147 (24.6%; 95% CI, 22.1%-27.2%) for the neurological plus other organ systems group, 30/83 (36.1%; 95% CI, 26.1%-47.5%) for the specific neurological group, and 49/244 (20.1%; 95% CI, 15.6%-25.8%) for the nonneurological group. The Mendelian disease patterns of the 527 molecular diagnoses included 280 (53.1%) autosomal dominant, 181 (34.3%) autosomal recessive (including 5 with uniparental disomy), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics.

Conclusions and relevance: Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. The Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from the clinical exome sequencing offered in the Medical Genetics Laboratory and Whole Genome Laboratory and the authors who are faculty members are indicated in the affiliation section. Dr Willis reported being currently employed by LabCorp, which performs commercial genetic testing. Dr Reid reported that being currently employed at Regeneron and owning stock in that company. Dr Bainbridge reported being the CEO of Codified Genomics. Dr Lupski reported owning stock in 23 and Me and Ion Torrent Systems; and being a co-inventor on multiple European and US patents related to molecular diagnostics for inherited neuropathies, eye diseases, and bacterial genomic fingerprinting. No other disclosures were reported.

Comment in

Similar articles

  • Clinical exome sequencing for genetic identification of rare Mendelian disorders.
    Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M, Fox M, Fogel BL, Martinez-Agosto JA, Wong DA, Chang VY, Shieh PB, Palmer CG, Dipple KM, Grody WW, Vilain E, Nelson SF. Lee H, et al. JAMA. 2014 Nov 12;312(18):1880-7. doi: 10.1001/jama.2014.14604. JAMA. 2014. PMID: 25326637 Free PMC article.
  • Clinical whole-exome sequencing for the diagnosis of mendelian disorders.
    Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Yang Y, et al. N Engl J Med. 2013 Oct 17;369(16):1502-11. doi: 10.1056/NEJMoa1306555. Epub 2013 Oct 2. N Engl J Med. 2013. PMID: 24088041 Free PMC article.
  • Diagnostic Impact and Cost-effectiveness of Whole-Exome Sequencing for Ambulant Children With Suspected Monogenic Conditions.
    Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, Chong B, Phelan D, Brett GR, Creed E, Jarmolowicz A, Yap P, Walsh M, Downie L, Amor DJ, Savarirayan R, McGillivray G, Yeung A, Peters H, Robertson SJ, Robinson AJ, Macciocca I, Sadedin S, Bell K, Oshlack A, Georgeson P, Thorne N, Gaff C, White SM. Tan TY, et al. JAMA Pediatr. 2017 Sep 1;171(9):855-862. doi: 10.1001/jamapediatrics.2017.1755. JAMA Pediatr. 2017. PMID: 28759686 Free PMC article.
  • [Genetic testing in the fetus and child].
    Bartholdi D, Miny P. Bartholdi D, et al. Ther Umsch. 2013 Nov;70(11):621-31. doi: 10.1024/0040-5930/a000457. Ther Umsch. 2013. PMID: 24168795 Review. German.
  • Recommendations for returning genomic incidental findings? We need to talk!
    Burke W, Antommaria AH, Bennett R, Botkin J, Clayton EW, Henderson GE, Holm IA, Jarvik GP, Khoury MJ, Knoppers BM, Press NA, Ross LF, Rothstein MA, Saal H, Uhlmann WR, Wilfond B, Wolf SM, Zimmern R. Burke W, et al. Genet Med. 2013 Nov;15(11):854-9. doi: 10.1038/gim.2013.113. Epub 2013 Aug 1. Genet Med. 2013. PMID: 23907645 Free PMC article. Review.

Cited by

References

    1. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369(16):1502–1511. - PMC - PubMed
    1. Shevell M, Ashwal S, Donley D, et al. Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology. 2003;60(3):367–380. - PubMed
    1. Shaffer LG American College of Medical Genetics Professional Practice and Guidelines Committee. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet Med. 2005;7(9):650–654. - PMC - PubMed
    1. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–764. - PMC - PubMed
    1. Kohane IS, Hsing M, Kong SW. Taxonomizing, sizing, and overcoming the incidentalome. Genet Med. 2012;14(4):399–404. - PMC - PubMed

Publication types

-