Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug;38(8 Suppl 1):29-33.
doi: 10.1016/0026-0495(89)90136-4.

Metabolism of glutamine in lymphocytes

Affiliations

Metabolism of glutamine in lymphocytes

K Brand et al. Metabolism. 1989 Aug.

Abstract

Pathways of glutamine metabolism in resting and proliferating rat thymocytes and established human T- and B-lymphoblastoid cell lines were evaluated by in vitro incubations of freshly prepared or cultured cells for one to two hours with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76% and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Similar results were obtained with the lymphoblastoid T- and B-cell lines. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for only 25% and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in lymphocytes appears to be transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as a second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37% and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-