Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 20;33(3):145-165.
doi: 10.1089/ars.2019.7975. Epub 2020 Jan 27.

Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation

Affiliations
Free article

Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation

Sergio Rius-Pérez et al. Antioxid Redox Signal. .
Free article

Abstract

Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.

Keywords: NF-κB interactions; inflammation; redox signaling; signaling complexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

-