Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Jul 3;40(3):e00683.
doi: 10.1097/RUQ.0000000000000683. eCollection 2024 Sep 1.

Characterizing Sentinel Lymph Node Status in Breast Cancer Patients Using a Deep-Learning Model Compared With Radiologists' Analysis of Grayscale Ultrasound and Lymphosonography

Affiliations
Comparative Study

Characterizing Sentinel Lymph Node Status in Breast Cancer Patients Using a Deep-Learning Model Compared With Radiologists' Analysis of Grayscale Ultrasound and Lymphosonography

Priscilla Machado et al. Ultrasound Q. .

Abstract

The objective of the study was to use a deep learning model to differentiate between benign and malignant sentinel lymph nodes (SLNs) in patients with breast cancer compared to radiologists' assessments.Seventy-nine women with breast cancer were enrolled and underwent lymphosonography and contrast-enhanced ultrasound (CEUS) examination after subcutaneous injection of ultrasound contrast agent around their tumor to identify SLNs. Google AutoML was used to develop image classification model. Grayscale and CEUS images acquired during the ultrasound examination were uploaded with a data distribution of 80% for training/20% for testing. The performance metric used was area under precision/recall curve (AuPRC). In addition, 3 radiologists assessed SLNs as normal or abnormal based on a clinical established classification. Two-hundred seventeen SLNs were divided in 2 for model development; model 1 included all SLNs and model 2 had an equal number of benign and malignant SLNs. Validation results model 1 AuPRC 0.84 (grayscale)/0.91 (CEUS) and model 2 AuPRC 0.91 (grayscale)/0.87 (CEUS). The comparison between artificial intelligence (AI) and readers' showed statistical significant differences between all models and ultrasound modes; model 1 grayscale AI versus readers, P = 0.047, and model 1 CEUS AI versus readers, P < 0.001. Model 2 r grayscale AI versus readers, P = 0.032, and model 2 CEUS AI versus readers, P = 0.041.The interreader agreement overall result showed κ values of 0.20 for grayscale and 0.17 for CEUS.In conclusion, AutoML showed improved diagnostic performance in balance volume datasets. Radiologist performance was not influenced by the dataset's distribution.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Machado P, Stanczak M, Liu JB, et al. Subdermal ultrasound contrast agent injection for sentinel lymph node identification: an analysis of safety and contrast agent dose in healthy volunteers. J Ultrasound Med. 2018;37(7):1611–1620.
    1. Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer. 2006;106(1):4–16.
    1. Moody AN, Bull J, Culpan AM, et al. Preoperative sentinel lymph node identification, biopsy and localisation using contrast enhanced ultrasound (CEUS) in patients with breast cancer: a systematic review and meta-analysis. Clin Radiol. 2017;72(11):959–971.
    1. Shimazu K, Miyake T, Tanei T, et al. Real-time visualization of lymphatic flow to sentinel lymph nodes by contrast-enhanced ultrasonography with sonazoid in patients with breast cancer. Ultrasound Med Biol. 2019;45(10):2634–2640.
    1. Liu Y-B, Xia M, Li Y-J, et al. Contrast-enhanced ultrasound in locating axillary sentinel lymph nodes in patients with breast cancer: a prospective study. Ultrasound Med Biol. 2021;47(6):1475–1483.

Publication types

LinkOut - more resources

-