Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan 2;138(1):67-75.
doi: 10.1111/j.1432-1033.1984.tb07882.x.

Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase

Free article

Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase

M Garret et al. Eur J Biochem. .
Free article

Abstract

Alkylation in beef tRNATrp of phosphodiester bonds by ethylnitrosourea and of N-7 in guanosines and N-3 in cytidines by dimethyl sulfate and carbethoxylation of N-7 in adenosines by diethyl pyrocarbonate were investigated under various conditions. This enabled us to probe the accessibility of tRNA functional groups and to investigate the structure of tRNATrp in solution as well as its interactions with tryptophanyl-tRNA synthetase. The phosphate reactivity towards ethylnitrosourea of unfolded tRNA was compared to that of native tRNA. The pattern of phosphate alkylation of tRNATrp is very similar to that found with other tRNAs studied before using the same approach with protected phosphates mainly located in the D and T psi arms. Base modification experiments showed a striking similarity in the reactivity of conserved bases known to be involved in secondary and tertiary interactions. Differences are found with yeast tRNAPhe since beef tRNATrp showed a more stable D stem and a less stable T psi stem. When alkylation by ethylnitrosourea was studied with the tRNATrp X tryptophanyl-tRNA synthetase complex we found that phosphates located at the 5' side of the anticodon stem and in the anticodon loop were strongly protected against the reagent. The alkylation at the N-3 position of the two cytidines in the CCA anticodon was clearly diminished in the synthetase X tRNA complex as compared with the modification in free tRNATrp; in contrast the two cytidines of the terminal CCA in the acceptor stem are not protected by the synthetase. The involvement of the anticodon region of tRNATrp in the recognition process with tryptophanyl-tRNA synthetase was confirmed in nuclease S1 mapping experiments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-