Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul;10(7):802-10.
doi: 10.1021/tx970008v.

Toxicity of peroxynitrite and related reactive nitrogen species toward Escherichia coli

Affiliations

Toxicity of peroxynitrite and related reactive nitrogen species toward Escherichia coli

J K Hurst et al. Chem Res Toxicol. 1997 Jul.

Abstract

The toxicity of peroxynitrite toward Escherichia coli (expressed as LD50, the concentration required to kill 50% of the bacteria) was found to be independent of bacterial cell densities over a wide experimental range, spanning 10(6)-10(10) colony-forming units/mL; the magnitude of LD50 was also pH-independent over the range pH 5.9-8.3. This highly unusual behavior can be quantitatively reproduced by a dynamical model in which (i) ONO2H is identified as the toxic form of the oxidant and (ii) the bulk of the added peroxynitrite decays to nitrate ion under these conditions. From the model, one estimates that 10(6)-10(7) ONO2H molecules are required to kill a bacterium, indicating a very high intrinsic toxicity (cf. HOCl, for which LD50 = 10(7)-10(8) molecules/cell of E. coli). Nearly complete protection was observed when bicarbonate ion was added to the buffer, even when concentrations of peroxynitrite exceeded 50 times the LD50 measured in the absence of bicarbonate. Consistent with previous reports, combinations of H2O2 and NO and, in weakly acidic media, H2O2 and NO2- were found to exhibit enhanced toxicities relative to the individual reactants. Protection by bicarbonate was utilized to assess the potential role of intermediary formation of ONO2H in bacterial killing in these systems. Approximately 25% protection by bicarbonate was observed for media containing H2O2 and NO2-, consistent with a minor contribution to killing by ONO2H under the experimental conditions. No protection was observed for media containing H2O2 and *NO in both anaerobic and aerobic environments, excluding extracellularly generated ONO2H as a participant in these bactericidal reactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-