Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;21(8):1019-32.
doi: 10.1002/(sici)1097-4598(199808)21:8<1019::aid-mus6>3.0.co;2-b.

Disruption and reorganization of sodium channels in experimental allergic neuritis

Affiliations

Disruption and reorganization of sodium channels in experimental allergic neuritis

S D Novakovic et al. Muscle Nerve. 1998 Aug.

Abstract

The axonal distribution of voltage-dependent Na+ channels was determined during inflammatory demyelinating disease of the peripheral nervous system. Experimental allergic neuritis was induced in Lewis rats by active immunization. In diseased spinal roots Na+ channel immunofluorescence at many nodes of Ranvier changed from a highly focal ring to a more diffuse pattern and, as the disease progressed, eventually became undetectable. The loss of nodal channels corresponded closely with the development of clinical signs. Electrophysiological measurements and computations showed that a lateral spread of nodal Na+ channels could contribute significantly to temperature sensitivity and conduction block. During recovery new clusters of Na+ channels were seen. In fibers with large-scale demyelination, the new aggregates formed at the edges of adhering Schwann cells and appeared to fuse to form new nodes. At nodes with demyelination limited to paranodal retraction, Na+ channels were often found divided into two symmetric highly focal clusters. These results suggest that reorganization of Na+ channels plays an important role in the pathogenesis of demyelinating neuropathies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources

-