Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploiting temporal aspects of cancer immunotherapy

Abstract

Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dynamic events underlying immune checkpoint therapy efficacy.
Fig. 2: The cellular and molecular dynamics of the tumour microenvironment following standard of care treatment.
Fig. 3: Clinical application of time-dependent precision immuno-oncology: what it could look like.

Similar content being viewed by others

References

  1. Zemek, R. M. et al. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front. Immunol. 11, 223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lesterhuis, W. J. et al. Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat. Rev. Drug Discov. 16, 264–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Germain, R. N. The art of the probable: system control in the adaptive immune system. Science 293, 240–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Zemek, R. M. et al. Bilateral murine tumor models for characterizing the response to immune checkpoint blockade. Nat. Protoc. 15, 1628–1648 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Combes, A. J., Samad, B. & Krummel, M. F. Defining and using immune archetypes to classify and treat cancer. Nat. Rev. Cancer 23, 491–505 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Hollern, D. P. et al. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179, 1191–1206.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, I. X. et al. A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Proc. Natl Acad. Sci. USA 117, 23684–23694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carroll, T. M. et al. Tumor monocyte content predicts immunochemotherapy outcomes in esophageal adenocarcinoma. Cancer Cell 41, 1222–1241.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Jaiswal, A. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 40, 524–544.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  18. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vilain, R. E. et al. Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma. Clin. Cancer Res. 23, 5024–5033 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qu, Y. et al. Baseline frequency of inflammatory CXCL9-expressing tumor-associated macrophages predicts response to avelumab treatment. Cell Rep. 32, 107873 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell 40, 624–638.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 12, eaav7431 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Anagnostou, V. et al. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1, 100139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wise-Draper, T. M. et al. Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local–regionally advanced head and neck squamous cell carcinoma. Clin. Cancer Res. 28, 1345–1352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grasso, C. S. et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 38, 500–515.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zemek, R. M. et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Sci. Transl. Med. 11, eaav7816 (2019).

    Article  PubMed  Google Scholar 

  33. Bald, T. et al. Immune cell–poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 4, 674–687 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zemek, R. M. et al. Temporally restricted activation of IFNβ signaling underlies response to immune checkpoint therapy in mice. Nat. Commun. 13, 4895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwart, D. et al. Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Rep. 41, 111769 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Schetters, S. T. et al. Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. J. Immunother. Cancer 8, e000588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8+ T cells in cancer. Nat. Rev. Cancer 23, 780–798 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taylor, M. A. et al. Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery. J. Immunother. Cancer 7, 328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Principe, N. et al. Tumor infiltrating effector memory antigen-specific CD8+ T cells predict response to immune checkpoint therapy. Front. Immunol. 11, 584423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kidman, J. et al. Immune checkpoint therapy responders display early clonal expansion of tumor infiltrating lymphocytes. Oncoimmunology 13, 2345859 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kruse, B. et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 618, 1033–1040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Shiao, S. L. et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell 42, 70–84.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 9, eaah3560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oliveira, G. & Wu, C. J. Dynamics and specificities of T cells in cancer immunotherapy. Nat. Rev. Cancer 23, 295–316 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cachot, A. et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 7, eabe3348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ding, L. et al. Antigen presentation by clonally diverse CXCR5+ B cells to CD4 and CD8 T cells is associated with durable response to immune checkpoint inhibitors. Front. Immunol. 14, 1176994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Jin, Y. et al. Different syngeneic tumors show distinctive intrinsic tumor-immunity and mechanisms of actions (MOA) of anti-PD-1 treatment. Sci. Rep. 12, 3278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, H. et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. Oncoimmunology 8, e1537581 (2019).

    Article  PubMed  Google Scholar 

  65. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Campbell, K. M. et al. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 41, 791–806.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, J. et al. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 41, 1152–1169.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Jenkins, L. et al. Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to immune-checkpoint blockade. Cancer Res. 82, 2904–2917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sivapalan, L. et al. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy. J. Immunother. Cancer 11, e005924 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Murray, J. C. et al. Elucidating the heterogeneity of immunotherapy response and immune-related toxicities by longitudinal ctDNA and immune cell compartment tracking in lung cancer. Clin. Cancer Res. 30, 389–403 (2023).

    Article  PubMed Central  Google Scholar 

  71. Anagnostou, V. et al. Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer. Cancer Res. 79, 1214–1225 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Anagnostou, V. et al. ctDNA response after pembrolizumab in non-small cell lung cancer: phase 2 adaptive trial results. Nat. Med. 29, 2259–2569 (2023).

    Article  Google Scholar 

  73. Kelly, R. J. et al. Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase 1b trial and ctDNA analyses. Nat. Med. 30, 1023–1034 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Niknafs, N. et al. Persistent mutation burden drives sustained anti-tumor immune responses. Nat. Med. 29, 440–449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gough, M. J. et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J. Immunother. 33, 798–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pittman, K. & Kubes, P. Damage-associated molecular patterns control neutrophil recruitment. J. Innate Immun. 5, 315–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Singel, K. L. & Segal, B. H. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol. Rev. 273, 329–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He, L. & Marneros, A. G. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am. J. Pathol. 182, 2407–2417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muller, E. et al. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front. Immunol. 8, 1383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, X. et al. T lymphocytes attenuate dermal scarring by regulating inflammation, neovascularization, and extracellular matrix remodeling. Adv. Wound Care 8, 527–537 (2019).

    Article  Google Scholar 

  92. Pena, O. A. & Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00715-1 (2024).

  93. Ploeger, D. T. et al. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun. Signal. 11, 29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Boothby, I. C., Cohen, J. N. & Rosenblum, M. D. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci. Immunol. 5, eaaz9631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu, K. H. et al. Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell 30, 885–903.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nosbaum, A. et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196, 2010–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Donati, G. et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19, 603–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yoon, H. et al. TGF-β1-mediated transition of resident fibroblasts to cancer-associated fibroblasts promotes cancer metastasis in gastrointestinal stromal tumor. Oncogenesis 10, 13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Patel, S. P. et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    Article  PubMed  Google Scholar 

  104. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Vos, J. L. et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 12, 7348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tilsed, C. M., Fisher, S. A., Nowak, A. K., Lake, R. A. & Lesterhuis, W. J. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 12, 960317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Eskander, R. N. et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N. Engl. J. Med. 388, 2159–2170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Colombo, N. et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 385, 1856–1867 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386, 556–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398, 27–40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Park, Y. H. et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat. Commun. 11, 6175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hui, Z. et al. PD-1 blockade potentiates neoadjuvant chemotherapy in NSCLC via increasing CD127+ and KLRG1+ CD8 T cells. NPJ Precis. Oncol. 7, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Schmidt, E. V. et al. Assessment of clinical activity of PD-1 checkpoint inhibitor combination therapies reported in clinical trials. JAMA Netw. Open 3, e1920833 (2020).

    Article  PubMed  Google Scholar 

  119. Reck, M. et al. First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: CheckMate 9LA 2-year update. ESMO Open 6, 100273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yabuuchi, H. et al. Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology 261, 598–604 (2011).

    Article  PubMed  Google Scholar 

  121. Principe, N. et al. Comprehensive testing of chemotherapy and immune checkpoint blockade in preclinical cancer models identifies additive combinations. Front. Immunol. 13, 872295 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Klopp, A. H. et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang, L., Pang, Y. & Moses, H. L. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31, 220–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seifert, L. et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology 150, 1659–1672.e5 (2016).

    Article  PubMed  Google Scholar 

  129. Wu, Q. et al. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed. J. 40, 200–211 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shaverdian, N. et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18, 895–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Faivre-Finn, C. et al. Impact of prior chemoradiotherapy-related variables on outcomes with durvalumab in unresectable stage III NSCLC (PACIFIC). Lung Cancer 151, 30–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Y. et al. Efficacy and safety of combined brain radiotherapy and immunotherapy in non-small-cell lung cancer with brain metastases: a systematic review and meta-analysis. Clin. Lung Cancer 23, 95–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Rodriguez-Ruiz, M. E. et al. Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mabs and are dependent on CD8 T cells and crosspriming. Cancer Res. 76, 5994–6005 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Rompre-Brodeur, A. et al. PD-1/PD-L1 immune checkpoint inhibition with radiation in bladder cancer: in situ and abscopal effects. Mol. Cancer Ther. 19, 211–220 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Young, K. H. et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE 11, e0157164 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wilmott, J. S. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 18, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Steinberg, S. M. et al. BRAF inhibition alleviates immune suppression in murine autochthonous melanoma. Cancer Immunol. Res. 2, 1044–1050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schilling, B. et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int. J. Cancer 133, 1653–1663 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Arthur, J. S. & Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Tel, J. et al. Preclinical exploration of combining plasmacytoid and myeloid dendritic cell vaccination with BRAF inhibition. J. Transl. Med. 14, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vella, L. J. et al. MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol. Res. 2, 351–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Deken, M. A. et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology 5, e1238557 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pieper, N. et al. Evolution of melanoma cross-resistance to CD8+ T cells and MAPK inhibition in the course of BRAFi treatment. Oncoimmunology 7, e1450127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Haas, L. et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Cancer 2, 693–708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kumagai, S., Koyama, S. & Nishikawa, H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer 21, 181–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jia, Y. et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies. Int. J. Cancer 145, 1432–1444 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Venugopalan, A. et al. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 7, 54137–54156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Isomoto, K. et al. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin. Cancer Res. 26, 2037–2046 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Patel, S. A. et al. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin. Cancer Res. 29, 30–39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Adachi, Y. et al. Inhibition of FGFR reactivates IFNγ signaling in tumor cells to enhance the combined antitumor activity of lenvatinib with anti-PD-1 antibodies. Cancer Res. 82, 292–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Kato, Y. et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 14, e0212513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mei, Z. et al. Lenvatinib enhances antitumor immunity by promoting the infiltration of TCF1+ CD8+ T cells in HCC via blocking VEGFR2. Cancer Sci. 114, 1284–1296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Finke, J. H. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res. 14, 6674–6682 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Long, G. V. et al. NeoTrio: randomized trial of neoadjuvant (NAT) pembrolizumab (Pembro) alone, in sequence (SEQ) with, or concurrent (CON) with dabrafenib plus trametinib (D+T) in resectable BRAF-mutant stage III melanoma to determine optimal combination of therapy. J. Clin. Oncol. 40, 9503–9503 (2022).

    Article  Google Scholar 

  160. Ascierto, P. A. et al. Sequencing of ipilimumab plus nivolumab and encorafenib plus binimetinib for untreated BRAF-mutated metastatic melanoma (SECOMBIT): a randomized, three-arm, open-label phase II trial. J. Clin. Oncol. 41, 212–221 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, J. C.-H. et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M–positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J. Thorac. Oncol. 14, 933–939 (2019).

    Article  PubMed  Google Scholar 

  162. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Choueiri, T. K. et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 31, 1030–1039 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Singh, K. et al. Correcting the drug development paradigm for glioblastoma requires serial tissue sampling. Nat. Med. 29, 2402–2405 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Fourie Zirkelbach, J. et al. Improving dose-optimization processes used in oncology drug development to minimize toxicity and maximize benefit to patients. J. Clin. Oncol. 40, 3489–3500 (2022).

    Article  PubMed  Google Scholar 

  166. Janssens, G. O. et al. Recommendations for the organisation of care in paediatric radiation oncology across Europe: a SIOPE-ESTRO-PROS-CCI-Europe collaborative project in the framework of the JARC. Eur. J. Cancer 114, 47–54 (2019).

    Article  PubMed  Google Scholar 

  167. Siegel, S. E. et al. Pediatric-inspired treatment regimens for adolescents and young adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: a review. JAMA Oncol. 4, 725–734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rwandamuriye, F. X. et al. A surgically optimized intraoperative poly(I:C)-releasing hydrogel prevents cancer recurrence. Cell Rep. Med. 4, 101113 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10, eaar1916 (2018).

    Article  PubMed  Google Scholar 

  170. Jin, S. M. et al. A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion. Nat. Nanotechnol. 18, 390–402 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells izcancer treatment. Nat. Mater. 17, 761–772 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Reijers, I. L. M. et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J. Exp. Med. 220, e20221952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Abril-Rodriguez, G. et al. PAK4 inhibition improves PD-1 blockade immunotherapy. Nat. Cancer 1, 46–58 (2020).

    Article  PubMed  Google Scholar 

  176. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Weber, J. S. et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17, 943–955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, S. et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat. Commun. 14, 8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee, S. E. et al. Immunologic predictors for clinical responses during immune checkpoint blockade in patients with myelodysplastic syndromes. Clin. Cancer Res. 29, 1938–1951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661 e645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yofe, I. et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nat. Cancer 3, 1336–1350 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Sitnikova, S. I. et al. Novel non-terminal tumor sampling procedure using fine needle aspiration supports immuno-oncology biomarker discovery in preclinical mouse models. J. Immunother. Cancer 9, e002894 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sugiyarto, G. et al. Reactivation of low avidity tumor-specific CD8+ T cells associates with immunotherapeutic efficacy of anti-PD-1. J. Immunother. Cancer 11, e007114 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Menzies, A. M. et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nat. Med. 27, 301–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Versluis, J. M. et al. Survival update of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma in the OpACIN and OpACIN-neo trials. Ann. Oncol. 34, 420–430 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. 28, 1178–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Nabet, B. Y. et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 183, 363–376.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Georgiev, P. et al. Reverse translating molecular determinants of anti-programmed death 1 immunotherapy response in mouse syngeneic tumor models. Mol. Cancer Ther. 21, 427–439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mosely, S. I. et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol. Res. 5, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 610, 161–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Amaria, R. N. et al. Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncol. 20, e378–e389 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.V.L. is supported by a National Health and Medical Research Council (NHMRC) Investigator Grant (2021/GNT2007839) and by the University of Sydney Medical Foundation. W.J.L. is supported by an NHMRC Investigator Grant (2021/GNT1196605).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to the discussion of the content, wrote the article and reviewed the manuscript before submission.

Corresponding author

Correspondence to Willem Joost Lesterhuis.

Ethics declarations

Competing Interests

R.M.Z. is an inventor on patent applications (WO/2019/178650A1 and PCT/AU2023/051218) related to ICT treatment combinations. V.A. receives research funding to Johns Hopkins University from AstraZeneca and Personal Genome Diagnostics, has received research funding to Johns Hopkins University from Bristol-Myers Squibb and Delfi Diagnostics in the past 5 years, is an advisory board member for AstraZeneca and Neogenomics and receives honoraria from Foundation Medicine and Personal Genome Diagnostics. V.A. is an inventor on patent applications (63/276,525, 17/779,936, 16/312,152, 16/341,862, 17/047,006 and 17/598,690) submitted by Johns Hopkins University related to cancer genomic analyses, ctDNA therapeutic response monitoring and immunogenomic features of response to immunotherapy that have been licensed to one or more entities. Under the terms of these license agreements, the university and inventors are entitled to fees and royalty distributions. I.P.S. had travel support by BMS and MSD, speaker fee by Pierre Fabre, Roche, BMS and MSD and has served as consultant on advisory boards from MSD. G.V.L. is consultant adviser for Agenus, Amgen, Array Biopharma, AstraZeneca, Bayer, BioNTech, Boehringer Ingelheim, Bristol Myers Squibb, Evaxion, Hexal AG (Sandoz Company), Highlight Therapeutics S.L., IOBiotech, Immunocore, Innovent Biologics USA, Merck Sharpe & Dohme, Novartis, PHMR Ltd, Pierre Fabre, Regeneron, Scancell and SkylineDX B.V. W.J.L. is consultant adviser for Douglas Pharmaceuticals, has received research funding from Douglas Pharmaceuticals, AstraZeneca and Axelia Oncology. W.J.L. is a founder and director of Setonix Pharmaceuticals and is inventor on patent applications (WO/2016/015095, WO/2019/178650A1 and PCT/AU2023/051218) related to ICT treatment combinations.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adjuvant treatment

A treatment given after surgery to reduce the chance of cancer recurrence.

Circulating tumour DNA

(ctDNA). Circulating tumour-derived fragmented DNA that can be used to assess minimal residual disease or capture intratumoural and temporal cancer heterogeneity.

Clonotype richness

A measure of the number of T cell clones with a unique T cell receptor, wherein a higher clonotype richness indicates a wider array of T cell receptors within the T cell population.

Co-stimulatory molecules

A cell surface protein that provides activation signals alongside primary antigen recognition to fully activate T cells.

Effector memory T cell

A subset of memory T cells with effector activity.

Fractionated doses

A delivery method of radiation to a site in which the total prescribed dose is divided into smaller doses over a period of time.

Immune dynamics

Series of immune-mediated biological events that occur in a sequence over time.

Myeloid-derived suppressor cell

(MDSC). A myeloid cell that arises under pathological conditions, defined by its T cell immunosuppressive functions.

Neoadjuvant treatment

A treatment given (partially or completely) before surgery to increase the likelihood of complete surgical resection and to reduce the chance of cancer recurrence.

Progenitor exhausted CD8+ T cells

(Tpex). Self-renewing CD8+ T cells with memory characteristics and high PD1 expression that are defined by the expression of the transcription factors TCF1 (encoded by the gene TCF7) and MYB, which replenish terminally exhausted effector cells.

Resident memory T cell

A subset of memory T cells that persist in tissue in which they were locally activated.

Terminally exhausted T cells

(Tex). Tpex cells give rise to Tex cells marked by CD38, CD39, PD1 and TIM3, which have diminished responsiveness to ICT, yet are the dominant phenotype of tumour antigen-specific T cells.

Tertiary lymphoid structures

Formations of ectopic lymphoid organs within tumours that consist of B cells, T cells and supporting dendritic cells.

Tumour-associated macrophages

A monocyte or macrophage-derived cells expressing macrophage markers, which can have a pro-inflammatory phenotype with antitumour functionality or an anti-inflammatory phenotype with tumour promoting effects.

Tumour microenvironment

(TME). The immediate environment of a tumour that includes blood vessels, immune cells, signalling molecules, fibroblasts and extracellular matrix.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemek, R.M., Anagnostou, V., Pires da Silva, I. et al. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 24, 480–497 (2024). https://doi.org/10.1038/s41568-024-00699-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00699-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer
-