#ifndef BMXORFUNC__H__INCLUDED__
#define BMXORFUNC__H__INCLUDED__
/*
Copyright(c) 2002-2019 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information please visit:  http://bitmagic.io
*/

/*! \file bmxor.h
    \brief Functions and utilities for XOR filters (internal)
*/

#include "bmdef.h"
#include "bmutil.h"


namespace bm
{

/**
    Parameters for XOR similarity search.
    Tuneup params allows to reduce the search space to better
    balance compression rate vs speed.

    min_lookup_depth - default: 0,  minimal search depth to still try to improve
    max_lookup_depth - default: (2billion) maximum scan search
        Set a smaller number to improve search time

    Example:
    min_lookup_depth = 64; max_lookup_depth = 1024;

    stop_gain - default: 65533 - cutoff to stop search when serch found gain
                better than "stop_gain" absolute value
    Example:
    stop_gain = 10000;

    target_gain_ratio - default: 0.89 - cut off ratio between original block cost
                        metric and XOR basedd metric to stop searching.
                        (90% better than the original block is "good enough")
    Example:
    target_gain_ratio = 0.50; // 50% improvement is good enough

    min_gaps - default: 3 - minimal size of GAP block to be considered for
                            XOR search candidate
 */
struct xor_sim_params
{
    unsigned min_lookup_depth;
    unsigned max_lookup_depth;
    unsigned stop_gain;
    float    target_gain_ratio;
    unsigned min_gaps;

    xor_sim_params()
    : min_lookup_depth(0),
      max_lookup_depth(~0u/2),
      stop_gain(bm::gap_max_bits-3),
      target_gain_ratio(0.89f),
      min_gaps(3)
    {}
};


/**
    XOR complementarity type between 2 blocks
    @internal
 */
enum xor_complement_match
{
    e_no_xor_match = 0,
    e_xor_match_GC,
    e_xor_match_BC,
    e_xor_match_iBC,
    e_xor_match_EQ
};

/*!
    Function (32-bit) calculates basic complexity statistics on XOR product of
    two blocks (b1 XOR b2)
    @ingroup bitfunc
    @internal
*/
inline
void bit_block_xor_change32(const bm::word_t* BMRESTRICT block,
                            const bm::word_t* BMRESTRICT xor_block,
                            unsigned size,
                            unsigned* BMRESTRICT gc,
                            unsigned* BMRESTRICT bc) BMNOEXCEPT
{
    BM_ASSERT(gc && bc);

    unsigned gap_count = 1;
    unsigned bit_count = 0;

    bm::word_t  w, w0, w_prev, w_l;
    w = w0 = *block ^ *xor_block;
    bit_count += word_bitcount(w);

    const int w_shift = int(sizeof(w) * 8 - 1);
    w ^= (w >> 1);
    gap_count += bm::word_bitcount(w);
    gap_count -= (w_prev = (w0 >> w_shift)); // negative value correction

    const bm::word_t* block_end = block + size;
    for (++block, ++xor_block; block < block_end; ++block, ++xor_block)
    {
        w = w0 = *block ^ *xor_block;
        bit_count += bm::word_bitcount(w);
        ++gap_count;
        if (!w)
        {
            gap_count -= !w_prev;
            w_prev = 0;
        }
        else
        {
            w ^= (w >> 1);
            gap_count += bm::word_bitcount(w);

            w_l = w0 & 1;
            gap_count -= (w0 >> w_shift);  // negative value correction
            gap_count -= !(w_prev ^ w_l);  // word border correction

            w_prev = (w0 >> w_shift);
        }
    } // for

    *gc = gap_count;
    *bc = bit_count;
}

/*!
    Function (64-bit) calculates basic complexity statistics on XOR product of
    two blocks (b1 XOR b2)
    @ingroup bitfunc
    @internal
*/
inline
void bit_block_xor_change64(const bm::word_t* BMRESTRICT s_block,
                            const bm::word_t* BMRESTRICT ref_block,
                            unsigned size,
                            unsigned* BMRESTRICT gc,
                            unsigned* BMRESTRICT bc) BMNOEXCEPT
{
    BM_ASSERT(gc && bc);

    unsigned gap_count = 1;
    unsigned bit_count = 0;

    const bm::id64_t* BMRESTRICT block =   (const bm::id64_t*) s_block;
    const bm::id64_t* BMRESTRICT xor_block =  (const bm::id64_t*) ref_block;

    bm::id64_t  w, w0, w_prev, w_l;
    w = w0 = *block ^ *xor_block;
    bit_count += word_bitcount64(w);

    const int w_shift = int(sizeof(w) * 8 - 1);
    w ^= (w >> 1);
    gap_count += bm::word_bitcount64(w);
    gap_count -= unsigned(w_prev = (w0 >> w_shift)); // negative value correction

    const bm::id64_t* block_end = block + (size/2);
    for (++block, ++xor_block; block < block_end; ++block, ++xor_block)
    {
        w = w0 = *block ^ *xor_block;
        bit_count += bm::word_bitcount64(w);
        ++gap_count;
        if (!w)
        {
            gap_count -= !w_prev;
            w_prev = 0;
        }
        else
        {
            w ^= (w >> 1);
            gap_count += bm::word_bitcount64(w);
            w_l = w0 & 1;
            gap_count -= unsigned(w0 >> w_shift);  // negative value correction
            gap_count -= !(w_prev ^ w_l);  // word border correction
            w_prev = (w0 >> w_shift);
        }
    } // for

    *gc = gap_count;
    *bc = bit_count;
}



/*!
    Function calculates number of times when bit value changed
    @internal
*/
inline
void bit_block_xor_change(const bm::word_t* BMRESTRICT block,
                              const bm::word_t* BMRESTRICT xor_block,
                              unsigned size,
                              unsigned* BMRESTRICT gc,
                              unsigned* BMRESTRICT bc) BMNOEXCEPT
{
#ifdef VECT_BLOCK_XOR_CHANGE
    VECT_BLOCK_XOR_CHANGE(block, xor_block, size, gc, bc);
#else
    #ifdef BM64OPT
        bm::bit_block_xor_change64(block, xor_block, size, gc, bc);
    #else
        bm::bit_block_xor_change32(block, xor_block, size, gc, bc);
    #endif
#endif
}

/**
    Structure to compute XOR gap-count profile by sub-block waves
    @ingroup bitfunc
    @internal
*/
struct block_waves_xor_descr
{
    // stats for s-block
    unsigned short sb_gc[bm::block_waves]; ///< GAP counts
    unsigned short sb_bc[bm::block_waves]; ///< BIT counts

    // stats ref.block XOR mask
    unsigned short sb_xor_gc[bm::block_waves]; ///< XOR-mask GAP count
    unsigned short sb_xor_bc[bm::block_waves]; ///< XOR-mask GAP count
};

/**
    Capture the XOR filter results (xor block against ref.block)
    @internal
 */
struct block_xor_match_descr
{
    typedef bvector_size_type   size_type;

    bm::xor_complement_match  match_type; ///< match type
    unsigned                  block_gain; ///< XOR filter improvement (best)
    size_type                 ref_idx;    ///< reference vector index
    bm::id64_t                xor_d64;    ///< recorded digest

    // sub-block waves masks for metrics
    bm::id64_t   gc_d64;
    bm::id64_t   bc_d64;
    bm::id64_t   ibc_d64;

    // recorded gains for metrics
    unsigned     gc_gain;
    unsigned     bc_gain;
    unsigned     ibc_gain;

    unsigned xor_gc;
    unsigned xor_bc;

    block_xor_match_descr() : match_type(e_no_xor_match) {}
};

/**
    XOR match pair
    @internal
 */
struct match_pair
{
    bvector_size_type         ref_idx;    ///< reference vector index
    bm::id64_t                xor_d64;    ///< recorded digest

    match_pair(){}
    match_pair(bvector_size_type idx, bm::id64_t d64)
    : ref_idx(idx), xor_d64(d64)
    {}

};

/**
    XOR match chain
    @internal
 */
template<typename BLOCK_IDX> struct block_match_chain
{
    BLOCK_IDX                nb;
    unsigned                 chain_size;
    unsigned                 ref_idx[64];
    bm::id64_t               xor_d64[64];
    bm::xor_complement_match match;

    bool operator==(const block_match_chain& bmc) const BMNOEXCEPT
    {
        if (nb != bmc.nb || chain_size != bmc.chain_size || match != bmc.match)
        {
            return false;
        }
        for (unsigned i = 0; i < chain_size; ++i)
        {
            if (ref_idx[i] != bmc.ref_idx[i])
                return false;
            if (match == e_xor_match_EQ)
                continue;
            if (xor_d64[i] != bmc.xor_d64[i])
                return false;
        }
        return true;
    }
};

/**
    Greedy algorithm to find additional matches
    improving the inital best match block on its match type

    @param match_pairs_vect - [out] target vector of best match pairs
    @param match_vect - [in/out] vector of all found match descriptors

    @return number of new finds (if any)
 */
template<typename PVT, typename VT>
typename VT::size_type
greedy_refine_match_vector(PVT&                      match_pairs_vect,
                           VT&                       match_vect,
                           typename VT::size_type    best_ref_idx,
                           bm::id64_t                d64,
                           bm::xor_complement_match  match_type)
{
    BM_ASSERT(match_type && d64);
    match_pairs_vect.resize(0);

    bm::id64_t  d64_acc(d64);

    // pass 1 (exact match)
    //
    typename VT::size_type sz = match_vect.size();
    for (typename VT::size_type i = 0; (i < sz) && (d64_acc != ~0ull); ++i)
    {
        block_xor_match_descr& xmd = match_vect[i];
        if (xmd.ref_idx == best_ref_idx) // self hit
            continue;
        if (xmd.match_type == match_type) // best compatible match types
        {
            bm::id64_t d64_new = ~d64_acc & xmd.xor_d64;
            if (d64_new)
            {
                d64_acc |= d64_new;    // add mask to accum
                match_pairs_vect.push_back(bm::match_pair(xmd.ref_idx, d64_new));
            }
            xmd.match_type = e_no_xor_match; // mark it to exclude from pass 2
        }
    } // for i

    // pass 2 (extended match)
    //
    const unsigned min_gain_cut_off = 50;
    for (typename VT::size_type i = 0; (i < sz) && (d64_acc != ~0ull); ++i)
    {
        block_xor_match_descr& xmd = match_vect[i];
        if (xmd.ref_idx == best_ref_idx || !xmd.match_type) // self hit or none
            continue;
        BM_ASSERT(xmd.match_type != match_type);

        bm::id64_t d64_new = 0;
        switch (match_type)
        {
        case e_xor_match_GC:
            if (xmd.gc_gain > min_gain_cut_off)
                d64_new = ~d64_acc & xmd.gc_d64;
            break;
        case e_xor_match_BC:
            if (xmd.bc_gain > min_gain_cut_off)
                d64_new = ~d64_acc & xmd.bc_d64;
            break;
        case e_xor_match_iBC:
            if (xmd.ibc_gain > min_gain_cut_off)
                d64_new = ~d64_acc & xmd.ibc_d64;
            break;
        default:
            break;
        } // switch

        if (d64_new) // some improvement found
        {
            d64_acc |= d64_new;    // add mask to accum
            match_pairs_vect.push_back(bm::match_pair(xmd.ref_idx, d64_new));
            xmd.match_type = e_no_xor_match;
        }
    } // for

    return match_pairs_vect.size();
}

/**
    Check effective bit-rate for the XOR encode vector
    @return 1 - < 256 (8bit), 2 - < 65536 (16-bit) or 0 - 32-bit
    @internal
 */
template<typename BMChain, typename RVect>
unsigned char check_pair_vect_vbr(const BMChain& mchain, const RVect& ref_vect)
{
    size_t max_idx = 0;
    for (size_t i = 0; i < mchain.chain_size; ++i)
    {
        bvector_size_type ridx = mchain.ref_idx[i];
        ridx = ref_vect.get_row_idx(ridx);
        if (ridx > max_idx)
            max_idx = ridx;
    } // for i
    if (max_idx < 256)
        return 1;
    if (max_idx < 65536)
        return 2;
    return 0;
}


/**
    Compute reference (non-XOR) 64-dim complexity descriptor for the
    s-block.
    Phase 1 of the XOR filtering process is to establish the base metric

    @internal
*/
inline
void compute_s_block_descr(const bm::word_t* BMRESTRICT block,
                        block_waves_xor_descr& BMRESTRICT x_descr,
                        unsigned* BMRESTRICT s_gc,
                        unsigned* BMRESTRICT s_bc) BMNOEXCEPT
{
    *s_gc = *s_bc = 0;
    // TODO: SIMD (for loop can go inside VECT to minimize LUT re-inits)
    for (unsigned i = 0; i < bm::block_waves; ++i)
    {
        unsigned off = (i * bm::set_block_digest_wave_size);
        const bm::word_t* sub_block = block + off;
        unsigned gc, bc;
        // TODO: optimize to compute GC and BC in a single pass
        #if defined(VECT_BLOCK_CHANGE)
            gc = VECT_BLOCK_CHANGE(sub_block, bm::set_block_digest_wave_size);
        #else
            #ifdef BM64OPT
                gc = bm::bit_block_change64(sub_block, bm::set_block_digest_wave_size);
                BM_ASSERT(gc == bm::bit_block_change32(sub_block, bm::set_block_digest_wave_size));
            #else
                gc = bm::bit_block_change32(sub_block, bm::set_block_digest_wave_size);
            #endif
        #endif
        bc = bm::bit_count_min_unroll(
                    sub_block, sub_block + bm::set_block_digest_wave_size);
        x_descr.sb_bc[i] = (unsigned short) bc;
        *s_bc += bc;
        if (i) // wave border correction
        {
            bm::word_t w_l = sub_block[-1];
            bm::word_t w_r = sub_block[0] & 1;
            w_l >>= 31;
            gc -= (w_l == w_r);
        }
        x_descr.sb_gc[i] = (unsigned short) gc;
        *s_gc += gc;

    } // for i
    // TODO: compute and return d64 - use it later
}


/**
    Build partial XOR product of 2 bit-blocks using digest mask

    @param target_block - target := block ^ xor_block
    @param block - arg1
    @param xor_block - arg2
    @param digest - mask for each block wave to XOR (1) or just copy (0)

    @internal
*/
inline
void bit_block_xor(bm::word_t*         target_block,
                   const bm::word_t*   block,
                   const bm::word_t*   xor_block,
                   bm::id64_t          digest) BMNOEXCEPT
{
    BM_ASSERT(target_block);
    BM_ASSERT(block);
    BM_ASSERT(xor_block);
    BM_ASSERT(digest);

#ifdef VECT_BIT_BLOCK_XOR
    VECT_BIT_BLOCK_XOR(target_block, block, xor_block, digest);
#else
    for (unsigned i = 0; i < bm::block_waves; ++i)
    {
        const bm::id64_t mask = (1ull << i);
        unsigned off = (i * bm::set_block_digest_wave_size);

    #ifdef BM64OPT
        const bm::id64_t* sub_block = (const bm::id64_t*)(block + off);
        bm::id64_t* t_sub_block = (bm::id64_t*)(target_block + off);
        const bm::id64_t* sub_block_end = sub_block + bm::set_block_digest_wave_size/2;
        if (digest & mask) // XOR filtered sub-block
        {
            const bm::id64_t* xor_sub_block = (const bm::id64_t*)(xor_block + off);
            for ( ;sub_block < sub_block_end; )
            {
                t_sub_block[0] = sub_block[0] ^ xor_sub_block[0];
                t_sub_block[1] = sub_block[1] ^ xor_sub_block[1];
                t_sub_block[2] = sub_block[2] ^ xor_sub_block[2];
                t_sub_block[3] = sub_block[3] ^ xor_sub_block[3];
                t_sub_block+=4; sub_block+=4; xor_sub_block+=4;
            } // for
        }
        else // just copy the source
        {
            for (; sub_block < sub_block_end; t_sub_block+=4, sub_block+=4)
            {
                t_sub_block[0] = sub_block[0];
                t_sub_block[1] = sub_block[1];
                t_sub_block[2] = sub_block[2];
                t_sub_block[3] = sub_block[3];
            } // for
        }
    #else
        const bm::word_t* sub_block = block + off;
        bm::word_t* t_sub_block = target_block + off;
        const bm::word_t* sub_block_end = sub_block + bm::set_block_digest_wave_size;
        if (digest & mask) // XOR filtered sub-block
        {
            const bm::word_t* xor_sub_block = xor_block + off;
            for (; sub_block < sub_block_end; )
            {
                t_sub_block[0] = sub_block[0] ^ xor_sub_block[0];
                t_sub_block[1] = sub_block[1] ^ xor_sub_block[1];
                t_sub_block[2] = sub_block[2] ^ xor_sub_block[2];
                t_sub_block[3] = sub_block[3] ^ xor_sub_block[3];
                t_sub_block+=4; sub_block+=4; xor_sub_block+=4;
            } // for
        }
        else // just copy the source
        {
            for (; sub_block < sub_block_end; t_sub_block+=4, sub_block+=4)
            {
                t_sub_block[0] = sub_block[0];
                t_sub_block[1] = sub_block[1];
                t_sub_block[2] = sub_block[2];
                t_sub_block[3] = sub_block[3];
            } // for
        }
    #endif
    } // for i
#endif
}


/**
    Build partial XOR product of 2 bit-blocks using digest mask

    @param target_block - target := target ^ xor_block
    @param xor_block - arg
    @param digest - mask for each block wave to XOR (1)

    @internal
*/
inline
void bit_block_xor(bm::word_t* target_block, const bm::word_t*  xor_block,
                   bm::id64_t digest) BMNOEXCEPT
{
    BM_ASSERT(target_block);
    BM_ASSERT(xor_block);
    BM_ASSERT(digest);

    #ifdef VECT_BIT_BLOCK_XOR_2WAY
        VECT_BIT_BLOCK_XOR_2WAY(target_block, xor_block, digest);
    #else
        while (digest)
        {
            bm::id64_t t = bm::bmi_blsi_u64(digest); // d & -d;
            unsigned wave = bm::word_bitcount64(t - 1);
            unsigned off = wave * bm::set_block_digest_wave_size;

        #ifdef BM64OPT
            const bm::id64_t* xor_sub_block = (const bm::id64_t*)(xor_block + off);
            bm::id64_t* t_sub_block = (bm::id64_t*)(target_block + off);
            const bm::id64_t* t_sub_block_end = (t_sub_block + bm::set_block_digest_wave_size/2);
            for (; t_sub_block < t_sub_block_end; t_sub_block+=4, xor_sub_block+=4)
            {
                t_sub_block[0] ^= xor_sub_block[0];
                t_sub_block[1] ^= xor_sub_block[1];
                t_sub_block[2] ^= xor_sub_block[2];
                t_sub_block[3] ^= xor_sub_block[3];
            } // for
        #else
            const bm::word_t* xor_sub_block = xor_block + off;
            bm::word_t* t_sub_block = target_block + off;
            const bm::word_t* t_sub_block_end = t_sub_block + bm::set_block_digest_wave_size;
            for (; t_sub_block < t_sub_block_end; t_sub_block+=4, xor_sub_block+=4)
            {
                t_sub_block[0] ^= xor_sub_block[0];
                t_sub_block[1] ^= xor_sub_block[1];
                t_sub_block[2] ^= xor_sub_block[2];
                t_sub_block[3] ^= xor_sub_block[3];
            } // for
        #endif
            digest = bm::bmi_bslr_u64(digest); // d &= d - 1;
        } // while
    #endif
}

/**
    List of reference bit-vectors with their true index associations

    Each referece vector would have two alternative indexes:
     - index(position) in the reference list
     - index(row) in the external bit-matrix (plane index)

    @internal
*/
template<typename BV>
class bv_ref_vector
{
public:
    typedef BV                                          bvector_type;
    typedef typename bvector_type::size_type            size_type;
    typedef bvector_type*                               bvector_type_ptr;
    typedef const bvector_type*                         bvector_type_const_ptr;
    typedef typename bvector_type::allocator_type       bv_allocator_type;


    typedef bm::block_match_chain<size_type>            block_match_chain_type;
    typedef
    bm::dynamic_heap_matrix<block_match_chain_type, bv_allocator_type>
                                                             matrix_chain_type;

public:

    /// reset the collection (resize(0))
    void reset()
    {
        rows_acc_ = 0;
        ref_bvects_.resize(0); ref_bvects_rows_.resize(0);
    }

    /**
        Add reference vector
        @param bv - bvector pointer
        @param ref_idx - reference (row) index
    */
    void add(const bvector_type* bv, size_type ref_idx)
    {
        BM_ASSERT(bv);
        ref_bvects_.push_back(bv);
        ref_bvects_rows_.push_back(ref_idx);
    }

    /// Get reference list size
    size_type size() const BMNOEXCEPT { return (size_type)ref_bvects_.size(); }

    /// Get reference vector by the index in this ref-vector
    const bvector_type* get_bv(size_type idx) const BMNOEXCEPT
                                        { return ref_bvects_[idx]; }

    /// Get reference row index by the index in this ref-vector
    size_type get_row_idx(size_type idx) const BMNOEXCEPT
                        { return (size_type)ref_bvects_rows_[idx]; }

    /// not-found value for find methods
    static
    size_type not_found() BMNOEXCEPT { return ~(size_type(0)); }

    /// Find vector index by the reference index
    /// @return ~0 if not found
    size_type find(std::size_t ref_idx) const BMNOEXCEPT
    {
        size_type sz = size();
        for (size_type i = 0; i < sz; ++i) // TODO: optimization
            if (ref_idx == ref_bvects_rows_[i])
                return i;
        return not_found();
    }

    /// Find vector index by the pointer
    /// @return ~0 if not found
    size_type find_bv(const bvector_type* bv) const BMNOEXCEPT
    {
        size_type sz = size();
        for (size_type i = 0; i < sz; ++i)
            if (bv == ref_bvects_[i])
                return i;
        return not_found();
    }

    /// Fill block allocation digest for all vectors in the reference collection
    ///   @param bv_blocks - [out] bvector of blocks statistics
    ///
    void fill_alloc_digest(bvector_type& bv_blocks) const
    {
        size_type sz = size();
        if (sz)
        {
            for (size_type i = 0; i < sz; ++i)
                ref_bvects_[i]->fill_alloc_digest(bv_blocks);
            BM_DECLARE_TEMP_BLOCK(tb)
            bv_blocks.optimize(tb);
        }
    }

    /// Reset and build vector of references from a basic bit-matrix
    ///  all NULL rows are skipped, not added to the ref.vector
    /// @sa add_vectors
    ///
    template<class BMATR>
    void build(const BMATR& bmatr)
    {
        reset();
        add_vectors(bmatr);
    }

    /// Append basic bit-matrix to the list of reference vectors
    /// @sa build
    /// @sa add_sparse_vector
    template<typename BMATR>
    void add_vectors(const BMATR& bmatr)
    {
        size_type rows = bmatr.rows();
        for (size_type r = 0; r < rows; ++r)
            if (bvector_type_const_ptr bv = bmatr.get_row(r))
                add(bv, rows_acc_ + r);
        rows_acc_ += unsigned(rows);
    }

    /// Add bit-transposed sparse vector as a bit-matrix
    /// @sa add_vectors
    ///
    template<class SV>
    void add_sparse_vector(const SV& sv)
    {
        add_vectors(sv.get_bmatrix());
    }

    /** Utility function to resize matrix based on number of vectors and blocks
    */
    void resize_xor_matrix(matrix_chain_type& matr,
                           size_type total_blocks) const
    {
        if (total_blocks)
            matr.resize(ref_bvects_.size(), total_blocks, false /*no-copy*/);
        else
            matr.resize(0, 0);
    }

    /** Calculate blocks digest and resize XOR distance matrix
        based on total number of available blocks
        @return true if created ok (false if no blocks found)
     */
    bool build_nb_digest_and_xor_matrix(matrix_chain_type& matr,
                                        bvector_type& bv_blocks) const
    {
        fill_alloc_digest(bv_blocks);
        size_type cnt = bv_blocks.count();
        if (!cnt)
            return false;
        resize_xor_matrix(matr, cnt);
        return true;
    }

protected:
    typedef bm::heap_vector<bvector_type_const_ptr, bv_allocator_type, true> bvptr_vector_type;
    typedef bm::heap_vector<std::size_t, bv_allocator_type, true> bv_plane_vector_type;

protected:
    unsigned                 rows_acc_ = 0;     ///< total rows accumulator
    bvptr_vector_type        ref_bvects_;       ///< reference vector pointers
    bv_plane_vector_type     ref_bvects_rows_;  ///< reference vector row idxs
};

// --------------------------------------------------------------------------
//
// --------------------------------------------------------------------------

/**
    XOR similarity model

    @internal
*/
template<typename BV>
struct xor_sim_model
{
public:
    typedef BV                                          bvector_type;
    typedef typename bvector_type::size_type            size_type;
    typedef typename bvector_type::allocator_type       bv_allocator_type;


    typedef bm::block_match_chain<size_type>            block_match_chain_type;
    typedef
    bm::dynamic_heap_matrix<block_match_chain_type, bv_allocator_type>
                                                             matrix_chain_type;

public:
    matrix_chain_type  matr; ///< model matrix
    bvector_type       bv_blocks;  ///< blocks digest
};

// --------------------------------------------------------------------------
//
// --------------------------------------------------------------------------

/**
    XOR scanner to search for complement-similarities in
    collections of bit-vectors

    @internal
*/
template<typename BV>
class xor_scanner
{
public:
    typedef bm::bv_ref_vector<BV>                 bv_ref_vector_type;
    typedef BV                                    bvector_type;
    typedef typename bvector_type::allocator_type bv_allocator_type;
    typedef typename bvector_type::size_type      size_type;

    typedef bm::heap_vector<bm::block_xor_match_descr, bv_allocator_type, true>
            xor_matches_vector_type;
    typedef bm::heap_vector<bm::match_pair, bv_allocator_type, true>
            match_pairs_vector_type;
    typedef typename bv_ref_vector_type::matrix_chain_type
                                                    matrix_chain_type;
    typedef bm::heap_vector<bm::word_t*, bv_allocator_type, true>
                                                    bv_blocks_vector_type;
    typedef bm::heap_vector<unsigned, bv_allocator_type, true>
                                                    bv_bcgc_vector_type;

    typedef bm::heap_vector<bm::block_waves_xor_descr, bv_allocator_type, true>
                                                    bv_xdescr_vector_type;

public:

    xor_scanner() {}
    ~xor_scanner()
    {
        free_blocks();
    }


    void set_ref_vector(const bv_ref_vector_type* ref_vect) BMNOEXCEPT
    { ref_vect_ = ref_vect; }

    const bv_ref_vector_type& get_ref_vector() const BMNOEXCEPT
    { return *ref_vect_; }

    /** Get statistics for the r-(or s-) block
        @param ri - nb cache index
    */
    void get_s_block_stats(size_type ri) BMNOEXCEPT;

    /** Compute statistics for the r-(or s-) block
        @param block - bit-block target
    */
    void compute_s_block_stats(const bm::word_t* block) BMNOEXCEPT;

    /** Scan for all candidate bit-blocks to find mask or match
        @return XOR referenece match type
    */
    bm::xor_complement_match
    search_best_xor_mask(const bm::word_t* s_block,
                              size_type ri,
                              size_type ridx_from,
                              size_type ridx_to,
                              unsigned i, unsigned j,
                              bm::word_t* tx_block,
                              const bm::xor_sim_params& params);
    /**
        Run a search to add possible XOR match chain additions
     */
    size_type refine_match_chain();


    /**
        XOR all match blocks to target using their digest masks
     */
    void apply_xor_match_vector(
                       bm::word_t* target_xor_block,
                       const bm::word_t* s_block,
                       size_type s_ri,
                       const match_pairs_vector_type& pm_vect,
                       unsigned i, unsigned j) const BMNOEXCEPT;

    /**
        Calculate matrix of best XOR match metrics per block
        for the attached collection of bit-vectors
        @return true if computed successfully
     */
    bool compute_sim_model(xor_sim_model<BV>&        sim_model,
                           const bv_ref_vector_type& ref_vect,
                           const bm::xor_sim_params& params);

    /**
        Calculate matrix of best XOR match metrics per block
        for the attached collection of bit-vectors
        @return true if computed successfully
     */
    bool compute_sim_model(xor_sim_model<BV> &sim_model,
                           const bm::xor_sim_params& params);

    /**
        Compute similarity model for block
     */
    void compute_sim_model(
        typename xor_sim_model<BV>::matrix_chain_type &sim_model_matr,
                           size_type                 nb,
                           size_type                 nb_rank,
                           const bm::xor_sim_params& params);
    /**
        Compute reference complexity descriptor based on XOR vector.
        Returns the digest of sub-blocks where XOR filtering improved the metric
        (function needs reference to estimate the improvement).

        part of Phase 2 of the XOR filtering process

        @sa compute_sub_block_complexity_descr

        @internal
    */
    void compute_xor_complexity_descr(
                const bm::word_t* BMRESTRICT          block,
                bm::id64_t                            block_d64,
                const bm::word_t* BMRESTRICT          xor_block,
                bm::block_waves_xor_descr& BMRESTRICT x_descr,
                bm::block_xor_match_descr& BMRESTRICT xmd) const BMNOEXCEPT;

    /**
        Check if XOR transform simplified block enough for
        compressibility objective
     */
    bool validate_xor(const bm::word_t* xor_block) const BMNOEXCEPT;

    size_type found_ridx() const BMNOEXCEPT { return found_ridx_; }

    /// Return best match type of a found block
    ///
    bm::xor_complement_match get_best_match_type() const BMNOEXCEPT
        {   return x_block_mtype_; }

    const bm::word_t* get_found_block() const BMNOEXCEPT
        { return found_block_xor_; }
    unsigned get_x_best_metric() const BMNOEXCEPT { return x_best_metric_; }
    bm::id64_t get_xor_digest() const BMNOEXCEPT { return x_d64_; }

    unsigned get_s_bc() const BMNOEXCEPT { return s_bc_; }
    unsigned get_s_gc() const BMNOEXCEPT { return s_gc_; }
    unsigned get_s_block_best() const BMNOEXCEPT
                    { return s_block_best_metric_; }


    bm::block_waves_xor_descr& get_descr() BMNOEXCEPT { return x_descr_; }

    static
    bm::xor_complement_match best_metric(unsigned bc, unsigned gc,
                                        unsigned* best_metric) BMNOEXCEPT;

    xor_matches_vector_type& get_match_vector() BMNOEXCEPT
        { return match_vect_; }

    match_pairs_vector_type& get_match_pairs() BMNOEXCEPT
        { return chain_match_vect_; }

    /// Return block from the reference vector [vect_idx, block_i, block_j]
    ///
    const bm::word_t* get_ref_block(size_type ri,
                                    unsigned i, unsigned j) const BMNOEXCEPT
    { return ref_vect_->get_bv(ri)->get_blocks_manager().get_block_ptr(i, j); }

    /// Sync TEMP vector size
    /// @internal
    void sync_nb_vect();

protected:

    /// Deoptimize vertical slice of GAP blocks
    /// @param nb - block number
    ///
    void deoptimize_gap_blocks(size_type nb,
                               const xor_sim_params& params);

    /// Free the collection of temp blocks
    void free_blocks() BMNOEXCEPT;


private:
    xor_scanner(const xor_scanner&) = delete;
    xor_scanner& operator=(const xor_scanner&) = delete;

private:
    BM_DECLARE_TEMP_BLOCK(xor_tmp_block_)

    const bv_ref_vector_type*   ref_vect_ = 0; ///< ref.vect for XOR filter
    bv_blocks_vector_type       nb_blocks_vect_;   ///< pointers to temp blocks
    bv_bcgc_vector_type         nb_gc_vect_;
    bv_bcgc_vector_type         nb_bc_vect_;
    bv_xdescr_vector_type       nb_xdescr_vect_;

    bv_allocator_type           alloc_;            ///< allocator to produce blocks

    bm::block_waves_xor_descr        x_descr_;  ///< XOR desriptor

    // S-block statistics
    //
    unsigned                      s_bc_;     ///< bitcount
    unsigned                      s_gc_;     ///< gap count
    unsigned                      s_block_best_metric_; ///< s-block orig.metric

    unsigned                      x_best_metric_; ///< min(gc, bc, ibc)
    bm::xor_complement_match      x_block_mtype_; ///< metric type

    // scan related metrics
    bm::id64_t                    x_d64_;        ///< search digest
    size_type                     found_ridx_;   ///< match vector (in references)
    const bm::word_t*             found_block_xor_;

    // match chain members:
    //
    xor_matches_vector_type       match_vect_; ///< vector of match descr
    match_pairs_vector_type       chain_match_vect_; ///< refined match pairs
};

// --------------------------------------------------------------------------
//
// --------------------------------------------------------------------------
//
//  Naming conventions and glossary:
//
//  s_block - source serialization block to be XOR filtered (anchor block)
//  best_ref_block - best reference block picked for XOR transform
//  xt_block - s_block XOR best_ref_block
//



template<typename BV>
void xor_scanner<BV>::get_s_block_stats(size_type ri) BMNOEXCEPT
{
    x_descr_ = nb_xdescr_vect_[ri];
    s_gc_ = nb_gc_vect_[ri];
    s_bc_ = nb_bc_vect_[ri];

    x_block_mtype_ = best_metric(s_bc_, s_gc_, &s_block_best_metric_);
    x_best_metric_ = s_block_best_metric_;
}


template<typename BV>
void xor_scanner<BV>::compute_s_block_stats(const bm::word_t* block) BMNOEXCEPT
{
    BM_ASSERT(IS_VALID_ADDR(block));
    BM_ASSERT(!BM_IS_GAP(block));

    bm::compute_s_block_descr(block, x_descr_, &s_gc_, &s_bc_);

    x_block_mtype_ = best_metric(s_bc_, s_gc_, &s_block_best_metric_);
    x_best_metric_ = s_block_best_metric_;
}
// --------------------------------------------------------------------------

template<typename BV>
void xor_scanner<BV>::compute_xor_complexity_descr(
                const bm::word_t* BMRESTRICT block,
                bm::id64_t                   block_d64,
                const bm::word_t* BMRESTRICT xor_block,
                bm::block_waves_xor_descr& BMRESTRICT x_descr,
                bm::block_xor_match_descr& BMRESTRICT xmd) const  BMNOEXCEPT
{
    bm::id64_t d0 = ~block_d64;

    xmd.xor_gc = xmd.xor_bc = 0;

    // Pass 1: compute XOR descriptors
    //
    for (unsigned i = 0; i < bm::block_waves; ++i)
    {
        unsigned off = (i * bm::set_block_digest_wave_size);
        const bm::word_t* sub_block = block + off;
        const bm::word_t* xor_sub_block = xor_block + off;

        unsigned xor_gc, xor_bc;
        bm::bit_block_xor_change(sub_block, xor_sub_block,
                                 bm::set_block_digest_wave_size,
                                 &xor_gc, &xor_bc);
        x_descr.sb_xor_bc[i] = (unsigned short)xor_bc;
        BM_ASSERT(xor_gc);
        if (i) // wave border correction
        {
            bm::word_t w_l = (sub_block[-1] ^ xor_sub_block[-1]);
            bm::word_t w_r = (sub_block[0] ^ xor_sub_block[0]) & 1;
            w_l >>= 31;
            xor_gc -= (w_l == w_r);
        }
        x_descr.sb_xor_gc[i] = (unsigned short)xor_gc;

        xmd.xor_bc += xor_bc;
        xmd.xor_gc += xor_gc;

    } // for i

    // Pass 2: find the best match
    //
    unsigned block_gc_gain(0), block_bc_gain(0), block_ibc_gain(0);
    bm::id64_t gc_digest(0), bc_digest(0), ibc_digest(0);
    const unsigned wave_max_bits = bm::set_block_digest_wave_size * 32;

    for (unsigned i = 0; i < bm::block_waves; ++i)
    {
        bm::id64_t dmask = (1ull << i);
        if (d0 & dmask)
            continue;

        unsigned xor_gc = x_descr.sb_xor_gc[i];
        if (xor_gc <= 1)
        {
            gc_digest |= dmask;
            block_gc_gain += x_descr.sb_gc[i]; // all previous GAPs are gone
        }
        else if (xor_gc < x_descr.sb_gc[i]) // some improvement in GAPs
        {
            gc_digest |= dmask;
            block_gc_gain += (x_descr.sb_gc[i] - xor_gc);
        }
        unsigned xor_bc = x_descr.sb_xor_bc[i];
        if (xor_bc < x_descr.sb_bc[i]) // improvement in BITS
        {
            bc_digest |= dmask;
            block_bc_gain += (x_descr.sb_bc[i] - xor_bc);
        }
        unsigned xor_ibc = wave_max_bits - xor_bc;
        unsigned wave_ibc = wave_max_bits - x_descr.sb_bc[i];
        if (xor_ibc < wave_ibc) // improvement in 0 BITS
        {
            ibc_digest |= dmask;
            block_ibc_gain += (wave_ibc - xor_ibc);
        }

    } // for i

    // Save metric results into XOR match descriptor
    //

    xmd.gc_d64 = gc_digest;
    xmd.bc_d64 = bc_digest;
    xmd.ibc_d64 = ibc_digest;

    xmd.gc_gain = block_gc_gain;
    xmd.bc_gain = block_bc_gain;
    xmd.ibc_gain = block_ibc_gain;


    // Find the winning metric and its digest mask
    //
    if (!(block_gc_gain | block_bc_gain | block_ibc_gain)) // match not found
    {
        // this is to check if xor filter has
        // canceled out a whole sub-block wave
        //
        bm::id64_t d0_x = ~bm::calc_block_digest0(xor_block);
        if (d0 == d0_x)
        {
            xmd.match_type = bm::e_xor_match_GC;
            xmd.block_gain = bm::block_waves;
            xmd.xor_d64 = d0;
            return;
        }
        xmd.match_type = bm::e_no_xor_match;
        xmd.block_gain = 0; xmd.xor_d64 = 0;
        return;
    }

    int new_gc = int(s_gc_) - int(block_gc_gain);
    if (new_gc < 0)
        new_gc = 0;
    int new_bc = int(s_bc_) - int(block_bc_gain);
    if (new_bc < 0)
        new_bc = 0;
    int new_ibc =  int(bm::gap_max_bits) - int(s_bc_) - int(block_ibc_gain);
    if (new_ibc < 0)
        new_ibc = 0;


    unsigned best_m;
    xmd.match_type = best_metric(unsigned(new_bc), unsigned(new_gc), &best_m);
    switch (xmd.match_type)
    {
    case e_xor_match_GC:
        if (new_ibc < new_gc)
        {
            xmd.block_gain = block_ibc_gain; xmd.xor_d64 = ibc_digest;
        }
        else
        {
            xmd.block_gain = block_gc_gain; xmd.xor_d64 = gc_digest;
        }
        break;
    case e_xor_match_BC:
        if (new_ibc < new_bc)
        {
            xmd.block_gain = block_ibc_gain; xmd.xor_d64 = ibc_digest;
        }
        else
        {
            xmd.block_gain = block_bc_gain; xmd.xor_d64 = bc_digest;
        }
        break;
    case e_xor_match_iBC:
        xmd.block_gain = block_ibc_gain; xmd.xor_d64 = ibc_digest;
        break;
    default:
        break;
    } // switch
#if 0
    // Disabled as cases compression ratio degradation in some tests
    if (!xmd.xor_d64) // best metric choice did not work try best gain
    {
        if (block_gc_gain >= block_bc_gain && block_gc_gain >= block_ibc_gain)
        {
            xmd.block_gain = block_gc_gain; xmd.xor_d64 = gc_digest;
        }
        else
        if (block_bc_gain > block_gc_gain && block_bc_gain > block_ibc_gain)
        {
            xmd.block_gain = block_bc_gain; xmd.xor_d64 = bc_digest;
        }
        else
        {
            xmd.block_gain = block_ibc_gain; xmd.xor_d64 = ibc_digest;
        }
    }
#endif
}

// --------------------------------------------------------------------------

template<typename BV>
bm::xor_complement_match
xor_scanner<BV>::search_best_xor_mask(const bm::word_t* s_block,
                                       size_type s_ri,
                                       size_type ridx_from,
                                       size_type ridx_to,
                                       unsigned i, unsigned j,
                                       bm::word_t* tx_block,
                                       const bm::xor_sim_params& params)
{
    BM_ASSERT(ridx_from <= ridx_to);
    BM_ASSERT(IS_VALID_ADDR(s_block));
    BM_ASSERT(tx_block);

    if (ridx_to > ref_vect_->size())
        ridx_to = ref_vect_->size();

    bm::xor_complement_match rb_found = e_no_xor_match;
    bm::id64_t d64 = 0;
    found_block_xor_ = 0;

    unsigned best_block_gain = 0;
    int best_ri = -1;

    match_vect_.resize(0);

    unsigned s_gc(0);
    bool s_gap = BM_IS_GAP(s_block);
    if (s_gap)
    {
        const bm::gap_word_t* gap_s_block = BMGAP_PTR(s_block);
        s_gc = bm::gap_length(gap_s_block);
        if (s_gc <= 3)
            return e_no_xor_match;
        s_block = nb_blocks_vect_.at(s_ri);
        BM_ASSERT(s_block);
    }
    bm::id64_t s_block_d64 = bm::calc_block_digest0(s_block);

    // scan pass: over reference vectors
    //
    if (ridx_to > ridx_from + params.max_lookup_depth)
        ridx_to = ridx_from + params.max_lookup_depth;

    size_type depth = 0;
    for (size_type ri = ridx_from; ri < ridx_to; ++ri, ++depth)
    {
        const bm::word_t* ref_block = get_ref_block(ri, i, j);
        if (BM_IS_GAP(ref_block))
        {
            const bm::gap_word_t* gap_ref_block = BMGAP_PTR(ref_block);
            unsigned r_gc = bm::gap_length(gap_ref_block);
            if (r_gc <= 3)
                continue;

            if (s_gap) // both blocks GAPs - check if XOR does not make sense
            {
                if (s_gc < r_gc) // S-GAP block is shorter than Ref BLOCK
                {
                    unsigned gc_diff = r_gc - s_gc;
                    if (gc_diff >= s_gc) // cannot improve anything
                        continue;
                }
            }

            if (nb_blocks_vect_.size() > ri)
                ref_block = nb_blocks_vect_[ri];
        }
        if (!IS_VALID_ADDR(ref_block))
            continue;

        BM_ASSERT(s_block != ref_block);

        bm::block_xor_match_descr xmd;
        compute_xor_complexity_descr(s_block, s_block_d64, ref_block, x_descr_, xmd);
        if (xmd.xor_d64) // candidate XOR block found
        {
            xmd.ref_idx = ri;
            BM_ASSERT(xmd.match_type);
            if (xmd.block_gain > best_block_gain)
            {
                // check if "it is good enough"
                BM_ASSERT(x_best_metric_ <= s_block_best_metric_);

                best_block_gain = xmd.block_gain;
                best_ri = int(ri);
                d64 = xmd.xor_d64;
                if (xmd.block_gain >= (bm::gap_max_bits-3))
                    break;
                unsigned curr_best;
                //bm::xor_complement_match match =
                best_metric(xmd.xor_bc, xmd.xor_gc, &curr_best);
                float gain_ratio =
                    float(xmd.block_gain) / float(s_block_best_metric_);

                if (depth >= params.min_lookup_depth &&
                    x_block_mtype_ == xmd.match_type)
                {
                    if (xmd.block_gain >= params.stop_gain)
                        break;
                    if (gain_ratio > params.target_gain_ratio)
                        break;
                }
            }
            match_vect_.push_back(xmd); // place into vector of matches
        }
    } // for ri

    found_ridx_ = size_type(best_ri);
    x_d64_ = d64;

    if (best_ri != -1) // found some gain, validate it now
    {
        // assumed that if XOR compression c_level is at the highest
        const float bie_bits_per_int = 3.0f; // c_level_ < 6 ? 3.75f : 3.0f;
        const unsigned bie_limit =
                unsigned(float(bm::gap_max_bits) / bie_bits_per_int);

        unsigned xor_bc, xor_gc;
        const bm::word_t* ref_block = get_ref_block(size_type(best_ri), i, j);
        bool r_gap = BM_IS_GAP(ref_block);
        if (r_gap)
            ref_block = nb_blocks_vect_[size_type(best_ri)];
        found_block_xor_ = ref_block;

        // TODO: one pass operation?
        bm::bit_block_xor(tx_block, s_block, ref_block, d64);
        bm::bit_block_change_bc(tx_block, &xor_gc, &xor_bc);

        if (!xor_bc) // check if completely identical block?
        {
            x_best_metric_ = xor_bc;
            found_ridx_ = size_type(best_ri);
            x_block_mtype_ = rb_found = e_xor_match_BC;

            unsigned block_pos;
            bool found = bm::block_find_first_diff(s_block, ref_block, &block_pos);
            if (!found)
            {
                x_block_mtype_ = rb_found = e_xor_match_EQ; x_d64_ = 0;
            }
        }
        else // find the best matching metric (GC, BC, iBC, ..)
        {
            rb_found = best_metric(xor_bc, xor_gc, &x_best_metric_);

            // double check if XOR improves compression
            // with accounted serialization overhead
            //
            if (rb_found)
            {
                if (x_best_metric_ > bie_limit ||
                    get_s_block_best() < x_best_metric_)
                    return e_no_xor_match;

                unsigned gain = get_s_block_best() - x_best_metric_;
                gain *= 3; // use bit estimate (speculative)
                // gain should be greater than overhead for storing
                // reference data: xor token, digest-64, block idx
                unsigned gain_min = unsigned(sizeof(char) + sizeof(unsigned));
                if (d64 != ~0ull) // if mask is all 1s - it is not used
                    gain_min += (unsigned)sizeof(bm::id64_t);
                else
                {
                    if (x_best_metric_ <= 1)
                        return rb_found;
                }
                gain_min *= 8; // in bits
                if (gain > gain_min)
                    return rb_found;

                return e_no_xor_match;
            }
        }
    }
    return rb_found;
}

// --------------------------------------------------------------------------

template<typename BV>
typename xor_scanner<BV>::size_type xor_scanner<BV>::refine_match_chain()
{
    size_type match_size = 0;
    if (x_d64_ == ~0ull || !x_d64_)
        return match_size;
    bm::xor_complement_match mtype = get_best_match_type();
    match_size = (size_type)
        bm::greedy_refine_match_vector(
            chain_match_vect_, match_vect_, found_ridx_, x_d64_, mtype);
    return match_size;
}

// --------------------------------------------------------------------------

template<typename BV>
bool xor_scanner<BV>::compute_sim_model(xor_sim_model<BV> &sim_model,
                                        const bv_ref_vector_type& ref_vect,
                                        const bm::xor_sim_params& params)
{
    const bv_ref_vector_type* ref_vect_curr = this->ref_vect_; // save ref-vect

    ref_vect_ = &ref_vect;
    bool sim_ok = compute_sim_model(sim_model, params);

    ref_vect_ = ref_vect_curr; // restore state
    return sim_ok;
}

template<typename BV>
bool xor_scanner<BV>::compute_sim_model(bm::xor_sim_model<BV>& sim_model,
                                        const bm::xor_sim_params& params)
{
    BM_ASSERT(ref_vect_);

    sim_model.bv_blocks.clear(false);
    bool ret = ref_vect_->build_nb_digest_and_xor_matrix(sim_model.matr,
                                                         sim_model.bv_blocks);
    if (!ret)
        return ret;

    sync_nb_vect();

    typename bvector_type::enumerator en(sim_model.bv_blocks);
    for (size_type col = 0; en.valid(); ++en, ++col)
    {
        size_type nb = *en;
        compute_sim_model(sim_model.matr, nb, col, params);
    } // for en
    return true;
}

// --------------------------------------------------------------------------

template<typename BV>
void xor_scanner<BV>::compute_sim_model(
                typename xor_sim_model<BV>::matrix_chain_type &sim_model_matr,
                        size_type                 nb,
                        size_type                 nb_rank,
                        const bm::xor_sim_params& params)
{
    BM_ASSERT(nb_rank < sim_model_matr.cols());

    const float bie_bits_per_int = 3.0f; // c_level_ < 6 ? 3.75f : 3.0f;
    const unsigned bie_limit =
            unsigned(float(bm::gap_max_bits) / bie_bits_per_int);

    deoptimize_gap_blocks(nb, params);

    size_type rsize = ref_vect_->size();

    unsigned i0, j0;
    bm::get_block_coord(nb, i0, j0);

    for (size_type ri=0; true; ++ri)
    {
        bm::block_match_chain<size_type>* m_row = sim_model_matr.row(ri);
        bm::block_match_chain<size_type>& bmc = m_row[nb_rank];
        bmc.nb = nb;
        bmc.chain_size = 0;
        bmc.match = e_no_xor_match;

        if (ri == rsize-1)
            break;

        const bm::word_t* s_block = get_ref_block(ri, i0, j0);
        if (!IS_VALID_ADDR(s_block))
            continue;

        if (BM_IS_GAP(s_block))
        {
            const bm::gap_word_t* gap_s_block = BMGAP_PTR(s_block);
            unsigned gc = bm::gap_length(gap_s_block);
            if (gc <= params.min_gaps)
                continue;
        }

        // compute s-block best metrics
        get_s_block_stats(ri);
        if (s_block_best_metric_ < 3)
            continue;

        // scan ref-vector plains for best similarity
        //
        bmc.match = search_best_xor_mask(s_block, ri, ri+1, rsize,
                                          i0, j0, xor_tmp_block_, params);

        // take index in the ref-vector (not translated to a plain number)
        //
        size_type ridx = found_ridx();
        bm::id64_t d64 = get_xor_digest();

        size_type chain_size = 0;
        if (d64 && d64 != ~0ULL) // something found
        {
            chain_size = refine_match_chain();
        }
        switch (bmc.match)
        {
        case e_no_xor_match:
            if (chain_size) // try chain compression for improve
            {
                match_pairs_vector_type& pm_vect = get_match_pairs();
                BM_ASSERT(chain_size == pm_vect.size());

                apply_xor_match_vector(xor_tmp_block_,
                                       s_block, ri,
                                       pm_vect, i0, j0);
                unsigned xor_bc, xor_gc;
                bm::bit_block_change_bc(xor_tmp_block_, &xor_gc, &xor_bc);

                bmc.match = best_metric(xor_bc, xor_gc, &x_best_metric_);
                if (bmc.match)
                {
                    if ((x_best_metric_ > bie_limit) ||
                        (get_s_block_best() < x_best_metric_))
                    {
                        bmc.match = e_no_xor_match;
                        continue;
                    }
                    for (size_type k = 0; k < chain_size; ++k)
                    {
                        const bm::match_pair& mp = pm_vect[k];
                        bmc.ref_idx[k] = (unsigned)mp.ref_idx;
                        bmc.xor_d64[k] = mp.xor_d64;
                        bmc.chain_size++;
                    } // for k
                }
            }
            break;
        case e_xor_match_EQ:
            bmc.chain_size++;
            bmc.ref_idx[0] = unsigned(ridx);
            break;
        default: // improving match found
            bmc.chain_size++;
            bmc.ref_idx[0] = unsigned(ridx);
            bmc.xor_d64[0] = d64;

            if (chain_size) // match chain needs no verification
            {
                match_pairs_vector_type& pm_vect = get_match_pairs();
                BM_ASSERT(chain_size == pm_vect.size());
                auto sz = pm_vect.size();
                for (size_type k = 0; k < sz; ++k)
                {
                    BM_ASSERT(k < 64);
                    const bm::match_pair& mp = pm_vect[k];
                    bmc.ref_idx[k+1] = (unsigned)mp.ref_idx;
                    bmc.xor_d64[k+1] = mp.xor_d64;
                    bmc.chain_size++;
                } // for k
            }

        } // switch

    } // for ri
}


// --------------------------------------------------------------------------

template<typename BV>
void xor_scanner<BV>::apply_xor_match_vector(
                       bm::word_t* target_xor_block,
                       const bm::word_t* s_block,
                       size_type s_ri,
                       const match_pairs_vector_type& pm_vect,
                       unsigned i, unsigned j) const BMNOEXCEPT
{
    bool s_gap = BM_IS_GAP(s_block);
    if (s_gap)
    {
        s_block = nb_blocks_vect_.at(s_ri);
        BM_ASSERT(s_block);
    }
    auto sz = pm_vect.size();
    for (typename match_pairs_vector_type::size_type k = 0; k < sz; ++k)
    {
        const bm::match_pair& mp = pm_vect[k];
        const bm::word_t* ref_block = get_ref_block(mp.ref_idx, i, j);
        if (BM_IS_GAP(ref_block))
        {
            ref_block = nb_blocks_vect_[mp.ref_idx];
            BM_ASSERT(ref_block);
        }
        if (!k)
            bm::bit_block_xor(target_xor_block, s_block, ref_block, mp.xor_d64);
        else
            bm::bit_block_xor(target_xor_block, ref_block, mp.xor_d64);
    } // for k
}

// --------------------------------------------------------------------------

template<typename BV>
bm::xor_complement_match
xor_scanner<BV>::best_metric(unsigned bc, unsigned gc,
                             unsigned* best_metric) BMNOEXCEPT
{
    BM_ASSERT(best_metric);
    unsigned ibc = bm::gap_max_bits - bc;
    if (!ibc)
    {
        *best_metric = gc;
        return e_xor_match_GC;
    }
    if (gc < bc) // GC < BC
    {
        if (gc <= ibc)
        {
            *best_metric = gc;
            return e_xor_match_GC;
        }
    }
    else // GC >= BC
    {
        if (bc <= ibc)
        {
            *best_metric = bc;
            return e_xor_match_BC;
        }
    }
    *best_metric = ibc;
    return e_xor_match_iBC;
}

// --------------------------------------------------------------------------


template<typename BV>
void xor_scanner<BV>::free_blocks() BMNOEXCEPT
{
    size_t sz = nb_blocks_vect_.size();
    for (size_t i = 0; i < sz; ++i)
    {
        bm::word_t* blk = nb_blocks_vect_[i];
        if (blk)
            alloc_.free_bit_block(blk);
    }
    nb_blocks_vect_.resize(0);
}

// --------------------------------------------------------------------------

template<typename BV>
void xor_scanner<BV>::deoptimize_gap_blocks(size_type nb,
                                    const xor_sim_params& params)
{
    size_type rsize = ref_vect_->size();
    BM_ASSERT(nb_blocks_vect_.size() == rsize);
    unsigned i0, j0;
    bm::get_block_coord(nb, i0, j0);

    for (size_type ri=0; ri < rsize; ++ri)
    {
        const bm::word_t* block = get_ref_block(ri, i0, j0);
        if (BM_IS_GAP(block))
        {
            const bm::gap_word_t* gap_block = BMGAP_PTR(block);
            unsigned gc = bm::gap_length(gap_block);
            if (gc <= params.min_gaps)
                continue;

            bm::word_t* t_block = nb_blocks_vect_.at(ri);
            if (!t_block)
            {
                t_block = alloc_.alloc_bit_block();
                nb_blocks_vect_[ri] = t_block;
            }
            bm::gap_convert_to_bitset(t_block, BMGAP_PTR(block));
            block = t_block;
        }
        if (!IS_VALID_ADDR(block))
            continue;

        block_waves_xor_descr& x_descr = nb_xdescr_vect_[ri];
        unsigned gc, bc;
        bm::compute_s_block_descr(block, x_descr, &gc, &bc);
        nb_gc_vect_[ri] = gc;
        nb_bc_vect_[ri] = bc;
    } // for ri

}

// --------------------------------------------------------------------------

template<typename BV>
void xor_scanner<BV>::sync_nb_vect()
{
    size_type rsize = ref_vect_->size();
    if (nb_blocks_vect_.size() == rsize)
        return;
    free_blocks();
    nb_blocks_vect_.resize(rsize);
    bm::word_t** vect_data = nb_blocks_vect_.data();
    for (size_type i = 0; i < rsize; ++i)
        vect_data[i] = 0;
    nb_gc_vect_.resize(rsize);
    nb_bc_vect_.resize(rsize);
    nb_xdescr_vect_.resize(rsize);
}

// --------------------------------------------------------------------------

} // namespace bm

#endif
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

-