Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Genetics. 1990 Mar; 124(3): 735–742.
PMCID: PMC1203964
PMID: 1968874

Fine Mapping of Quantitative Trait Loci Using Selected Overlapping Recombinant Chromosomes, in an Interspecies Cross of Tomato

Abstract

Quantitative trait loci (QTLs) have been mapped to small intervals along the chromosomes of tomato (Lycopersicon esculentum), by a method we call substitution mapping. The size of the interval to which a QTL can be mapped is determined primarily by the number and spacing of previously mapped genetic markers in the region surrounding the QTL. We demonstrate the method using tomato genotypes carrying chromosomal segments from Lycopersicon chmielewskii, a wild relative of tomato with high soluble solids concentration but small fruit and low yield. Different L. chmielewskii chromosomal segments carrying a common restriction fragment length polymorphism were identified, and their regions of overlap determined using all available genetic markers. The effect of these chromosomal segments on soluble solids concentration, fruit mass, yield, and pH, was determined in the field. Many overlapping chromosomal segments had very different phenotypic effects, indicating QTLs affecting the phenotype(s) to lie in intervals of as little as 3 cM by which the segments differed. Some associations between different traits were attributed to close linkage between two or more QTLs, rather than pleiotropic effects of a single QTL: in such cases, recombination should separate desirable QTLs from genes with undesirable effects. The prominence of such trait associations in wide crosses appears partly due to infrequent reciprocal recombination between heterozygous chromosomal segments flanked by homozygous regions. Substitution mapping is particularly applicable to gene introgression from wild to domestic species, and generally useful in narrowing the gap between linkage mapping and physical mapping of QTLs.

Full Text

The Full Text of this article is available as a PDF (2.9M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Birky CW, Jr, Walsh JB. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. [PMC free article] [PubMed] [Google Scholar]
  • Borts RH, Haber JE. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. [PubMed] [Google Scholar]
  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  • Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. [PMC free article] [PubMed] [Google Scholar]
  • Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. [PubMed] [Google Scholar]
  • Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. [PMC free article] [PubMed] [Google Scholar]
  • GRANT V. The regulation of recombination in plants. Cold Spring Harb Symp Quant Biol. 1958;23:337–363. [PubMed] [Google Scholar]
  • Haldane JB, Waddington CH. Inbreeding and Linkage. Genetics. 1931 Jul;16(4):357–374. [PMC free article] [PubMed] [Google Scholar]
  • Hanson WD. Early Generation Analysis of Lengths of Heterozygous Chromosome Segments around a Locus Held Heterozygous with Backcrossing or Selfing. Genetics. 1959 Sep;44(5):833–837. [PMC free article] [PubMed] [Google Scholar]
  • Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. [PMC free article] [PubMed] [Google Scholar]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed] [Google Scholar]
  • Page DC. Sex reversal: deletion mapping the male-determining function of the human Y chromosome. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):229–235. [PubMed] [Google Scholar]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

-