Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Arch Virol. 2007; 152(10): 1885–1900.
Published online 2007 Jun 14. doi: 10.1007/s00705-007-1005-2
PMCID: PMC7087358
PMID: 17564760

Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves

Summary

Although winter dysentery (WD), which is caused by the bovine coronavirus (BCoV) is characterized by the sudden onset of diarrhea in many adult cattle in a herd, the pathogenesis of the WD-BCoV is not completely understood. In this study, colostrum-deprived calves were experimentally infected with a Korean WD-BCoV strain and examined for viremia, enteric and nasal virus shedding as well as for viral antigen expression and virus-associated lesions in the small and large intestines and the upper and lower respiratory tract from 1 to 8 days after an oral infection. The WD-BCoV-inoculated calves showed gradual villous atrophy in the small intestine and a gradual increase in the crypt depth of the large intestine. The WD-BCoV-infected animals showed epithelial damage in nasal turbinates, trachea and lungs, and interstitial pneumonia. The WD-BCoV antigen was detected in the epithelium of the small and large intestines, nasal turbinates, trachea and lungs. WD-BCoV RNA was detected in the serum from post-inoculation day 3. These results show that the WD-BCoV has dual tropism and induces pathological changes in both the digestive and respiratory tracts of calves. To our knowledge, this is the first detailed report of dual enteric and respiratory tropisms of WD-BCoV in calves. Comprehensive studies of the dual tissue pathogenesis of the BCoV might contribute to an increased understanding of similar pneumoenteric CoV infections in humans.

Keywords: Nasal Swab, Nasal Turbinate, Adult Cattle, Bovine Respiratory Disease, Feedlot Cattle

References

  • An S, Chen CJ, Yu X, Leibowitz JL, Makino S. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol. 1999;73:7853–7859. [PMC free article] [PubMed] [Google Scholar]
  • Azevedo MS, Yuan L, Jeong KI, Gonzalez A, Nguyen TV, Pouly S, Gochnuer M, Zhang W, Azevedo A, Saif LJ. Viremia and nasal and rectal shedding of rotavirus in gnotobiotic pigs inoculated with Wa human rotavirus. J Virol. 2005;79:5428–5436. doi: 10.1128/JVI.79.9.5428-5436.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res. 2003;62:19–111. doi: 10.1016/S0065-3527(03)62002-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Cheville NF. Interpretation of acute cell injury: degeneration. In: Cheville NF, editor. Ultrastructural pathology: an introduction to interpretation. Iowa: Iowa State University Press; 1994. pp. 51–79. [Google Scholar]
  • Cho KO, Hoet AE, Loerch SC, Wittum TE, Saif LJ. Evaluation of concurrent shedding of bovine coronavirus via the respiratory tract and enteric route in feedlot cattle. Am J Vet Rec. 2001;62:1436–1441. doi: 10.2460/ajvr.2001.62.1436. [PubMed] [CrossRef] [Google Scholar]
  • Cho KO, Hasoksuz M, Nielsen PR, Chang KO, Lathrop S, Saif LJ. Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection. Arch Virol. 2001;146:2401–2419. doi: 10.1007/s007050170011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Cho KO, Halbur PG, Bruna JD, Sorden SD, Yoon KJ, Janke BH, Chang KO, Saif LJ. Detection and isolation of coronavirus from feces of three herds of feedlot cattle during outbreaks of winter dysentery-like disease. J Am Vet Med Assoc. 2000;217:1191–1194. doi: 10.2460/javma.2000.217.1191. [PubMed] [CrossRef] [Google Scholar]
  • Cho KO, Ohashi K, Onuma M. Electron microscopic and immunohistochemical localization of Marek’s disease (MD) herpesvirus particles in MD skin lymphomas. Vet Pathol. 1999;36:314–320. doi: 10.1354/vp.36-4-314. [PubMed] [CrossRef] [Google Scholar]
  • Chouljenko VN, Kousoulas KG, Lin X, Storz J. Nucleotide and predicted amino acid sequences of all genes encoded by the 3′ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes. 1998;17:33–42. doi: 10.1023/A:1008048916808. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Dungworth DL. The respiratory system. In: Jubb KVF, Kennedy PC, Palmer N, editors. Pathology of domestic animals. San Diego: Academic Press; 1993. pp. 539–699. [Google Scholar]
  • Dyer RM. The bovine respiratory disease complex: infectious agents. Compend Contin Educ Pract Vet. 1981;3:S374–S382. [Google Scholar]
  • Eleouet JF, Chilmonczyk S, Besnardeau L, Laude H. Transmissible gastroenteritis coronavirus indues programmed cell death in infected cells through a caspase-dependent pathway. J Virol. 1998;72:4918–4924. [PMC free article] [PubMed] [Google Scholar]
  • El-Kanawati ZRH, Tsunemitsu H, Smith DR, Saif LJ. Infection and cross-protection studies of winter dysentery and calf diarrhea bovine coronavirus strains in colostrum-deprived and gnotobiotic calves. Am J Vet Res. 1996;57:48–53. [PubMed] [Google Scholar]
  • Flynn WT, Saif LJ, Moorhead PG. Pathogenesis of porcine enteric calicivirus in four-day-old gnotobiotic piglets. Am J Vet Res. 1988;49:819–825. [PubMed] [Google Scholar]
  • Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371–374. doi: 10.1006/viro.2000.0757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res. 2002;84:101–109. doi: 10.1016/S0168-1702(02)00004-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hussain KA, Storz J, Kousoulas KG. Comparison of bovine coronavirus (BCV) antigens: monoclonal antibodies to the spike glycoprotein distinguish between vaccine and wild-type strains. Virology. 1991;183:442–445. doi: 10.1016/0042-6822(91)90163-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jeong JH, Kim GY, Yoon SS, Park SJ, Kim YJ, Sung CM, Shin SS, Lee BJ, Kang MI, Park NY, Koh HB, Cho KO. Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002–2003. Virus Res. 2005;108:207–212. doi: 10.1016/j.virusres.2004.07.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jeong JH, Kim GY, Yoon SS, Park SJ, Kim YJ, Sung CM, Shin SS, Koh HB, Lee BJ, Lee CY, Kang MI, Kim HJ, Park NY, Cho KO. Detection and isolation of winter dysentery bovine coronavirus circulated in Korea during 2002–2004. J Vet Med Sci. 2005;67:187–189. doi: 10.1292/jvms.67.187. [PubMed] [CrossRef] [Google Scholar]
  • Kapil S, Ttrent AM, Goyal SM. Excretion and persistence of bovine coronavirus in neonatal calves. Arch Virol. 1990;115:127–132. doi: 10.1007/BF01310629. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Kipar A, May H, Menger S, Weber M, Leukert W, Reinacher M. Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis. Vet Pathol. 2005;42:321–330. doi: 10.1354/vp.42-3-321. [PubMed] [CrossRef] [Google Scholar]
  • Kyuwa S, Cohen M, Nelson G, Tahara SM, Stohlman SA. Modulation of cellular macromolecular synthesis by coronavirus: implication for pathogenesis. J Virol. 1994;68:6815–6819. [PMC free article] [PubMed] [Google Scholar]
  • Lai MMC, Holmes KV. Coronaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. Philadephia: Lippincott-Raven; 2001. pp. 1163–1185. [Google Scholar]
  • Lathrop SL, Wittum TE, Loerch SC, Perino LJ, Saif LJ. Antibody titers against bovine coronavirus and shedding of the virus via the respiratory tract in feedlot cattle. Am J Vet Res. 2000;61:1057–1061. doi: 10.2460/ajvr.2000.61.1057. [PubMed] [CrossRef] [Google Scholar]
  • Mebus CA. Pathogenesis of coronaviral infection in calves. J Am Vet Med Assoc. 1978;173:631–632. [PubMed] [Google Scholar]
  • Mebus CA, Stair EL, Rhodes MB, Twiehaus MJ. Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Vet Pathol. 1973;10:45–64. [PubMed] [Google Scholar]
  • Park SJ, Jeong C, Yoon SS, Choy HE, Saif LJ, Park SH, Kim YJ, Jeong JH, Park SI, Kim HH, Lee BJ, Cho HS, Kim SK, Kang MI, Cho KO. Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons. J Clin Microbiol. 2006;44:3178–3188. doi: 10.1128/JCM.02667-05. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Poon LL, Leung CS, Chan KH, Yuen KY, Guan Y, Peiris JS. Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non-human primates. J Med Virol. 2005;76:435–440. doi: 10.1002/jmv.20379. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Saif LJ, Wesley RD. Transmissible gastroenteritis and porcine respiratory coronavirus. In: Straw BE, D’Allaire S, Mengeling WL, Taylor DI, editors. Diseases of swine. Ames, Iowa: Iowa State University Press; 1999. pp. 295–325. [Google Scholar]
  • Saif LJ. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: an enigma resolved? Cornell Vet. 1990;80:303–311. [PubMed] [Google Scholar]
  • Saif LJ, Redman DR, Moorhead PD, Theil KW. Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts. Am J Vet Res. 1986;47:1426–1432. [PubMed] [Google Scholar]
  • Schultze B, Herrler G. Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis virus. Adv Exp Med Biol. 1993;342:299–304. [PubMed] [Google Scholar]
  • Schultze B, Gross HJ, Brossmer R, Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol. 1991;65:6232–6237. [PMC free article] [PubMed] [Google Scholar]
  • Shi X, Gong E, Gao D, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Wu B, Fang W, Liao S, Wang S, Xie Z, Lu M, Hou L, Zhong H, Shao B, Li N, Liu C, Pei F, Yang J, Wang Y, Han Z, Shi X, Zhang Q, You J, Zhu X. Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. Am J Gastroenterol. 2005;100:169–176. doi: 10.1111/j.1572-0241.2005.40377.x. [PubMed] [CrossRef] [Google Scholar]
  • Silim A, Elazhary MA. Detection of infectious rhinotracheitis and bovine viral diarrhea virus in the nasal epithelial cells by the direct immunofluorescence technique. Can J Com Med. 1983;47:18–22. [PMC free article] [PubMed] [Google Scholar]
  • Smith DR, Tsunemitsu H, Heckert RA, Saif LJ. Evaluation of two antigen-capture ELISAs using polyclonal or monoclonal antibodies for the detection of bovine coronavirus. J Vet Diagn Invest. 1996;8:99–105. [PubMed] [Google Scholar]
  • Storz J, Zhang XM, Rott R. Comparison of hemagglutinating, receptor destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains. Arch Virol. 1992;125:193–204. doi: 10.1007/BF01309637. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Straub OC. Viral respiratory infections of cattle. Bovine Pract. 1995;29:66–70. [Google Scholar]
  • Traven M, Naslund K, Linde N, Linde B, Silvan A, Fossum C, Hedlund KO, Sarsson B. Experimental reproduction of winter dysentery in lactating cows using BCV – comparison with BCV infection in milk-fed calves. Vet Microbiol. 2001;81:127–151. doi: 10.1016/S0378-1135(01)00337-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Tsunemitsu H, Saif LJ. Antigenic and biological comparisons of bovine coronaviruses derived from neonatal calf diarrhea and winter dysentery of adult cattle. Arch Virol. 1995;140:1303–1311. doi: 10.1007/BF01322757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Welch SK, Saif LJ. Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: comparison of reactivity with virulent and attenuated virus. Arch Virol. 1988;101:221–235. doi: 10.1007/BF01311003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

-