Synlett 2024; 35(11): 1301-1305
DOI: 10.1055/a-2214-5397
cluster
Japan/Netherlands Gratama Workshop

Synthesis of an Alternating Polycation with the Dense 1,2,3-Triazole Backbone

Tomoki Omae
a   Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
Masaki Nakahata
a   Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
Yuri Kamon
b   Administration Department, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
a   Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
› Institutsangaben


Abstract

Polycations are an important class of water-soluble polymers because they form polyion complexes with DNA. Thus, the synthesis of polycations with controlled monomer sequences will be of increasing importance for the formation of well-defined polyion complexes. In this study, cationic homopolymer and alternating copolymer with the dense triazole backbone were synthesized by copper(I)-catalyzed azide–alkyne cycloaddition polymerization. The polycations obtained were characterized by potentiometric and turbidimetric titrations, and by complex formation with poly(acrylic acid).

Supporting Information



Publikationsverlauf

Eingereicht: 26. Oktober 2023

Angenommen nach Revision: 20. November 2023

Accepted Manuscript online:
20. November 2023

Artikel online veröffentlicht:
08. Januar 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Neu M, Fischer D, Kissel T. J. Gene Med. 2005; 7: 992
    • 1b Thomas M, Klibanov AM. Appl. Microbiol. Biotechnol. 2003; 62: 27
    • 1c Zhang Y, Wang Z, Gemeinhart RA. J. Controlled Release 2013; 172: 962
    • 1d Osada K. Polymers 2020; 12: 1603
    • 1e Vetter VC, Wagner E. J. Controlled Release 2022; 346: 110
    • 1f Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, Zhou Y, Chen X. Adv. Mater. 2023; 35: 2207471
    • 2a Majumdar RN, Yang S.-L, Harwood HJ. J. Polym. Sci., Polym. Chem. Ed. 1983; 21: 1717
    • 2b Couture G, Ladmiral V, Améduri B. RSC Adv. 2015; 5: 10243
    • 3a Yamasaki S, Kamon Y, Xu L, Hashidzume A. Polymers 2021; 13: 1627
    • 3b Okuno K, Miura J, Yamasaki S, Nakahata M, Kamon Y, Hashidzume A. Polym. Chem. 2023; 14: 1488
    • 3c Xu L, Nakahata M, Kamon Y, Hashidzume A. J. Polym. Sci. 2024; in press DOI: 10.1002/pol.20230760.
  • 4 Kamon Y, Miura J, Okuno K, Yamasaki S, Nakahata M, Hashidzume A. Macromolecules 2023; 56: 292
    • 5a Click Polymerization . Qin A, Tang BZ. Royal Society of Chemistry; London: 2018
    • 5b Angelo NG, Arora PS. J. Am. Chem. Soc. 2005; 127: 17134
    • 5c Angelo NG, Arora PS. J. Org. Chem. 2007; 72: 7963
    • 5d Binauld S, Hawker CJ, Fleury E, Drockenmuller E. Angew. Chem. Int. Ed. 2009; 48: 6654
    • 5e Binauld S, Damiron D, Connal LA, Hawker CJ, Drockenmuller E. Macromol. Rapid Commun. 2011; 32: 147
    • 5f Nguyen HV. T, Jiang Y, Mohapatra S, Wang W, Barnes JC, Oldenhuis NJ, Chen KK, Axelrod S, Huang Z, Chen Q, Golder MR, Young K, Suvlu D, Shen Y, Willard AP, Hore MJ. A, Gómez-Bombarelli R, Johnson JA. Nat. Chem. 2022; 14: 85
    • 5g Wang W, Jiang Y, Huang Z, Nguyen HV. T, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. J. Am. Chem. Soc. 2022; 144: 23332
    • 6a Angell YL, Burgess K. Chem. Soc. Rev. 2007; 36: 1674
    • 6b Holub JM, Kirshenbaum K. Chem. Soc. Rev. 2010; 39: 1325
    • 6c Mohammed I, Kummetha IR, Singh G, Sharova N, Lichinchi G, Dang J, Stevenson M, Rana TM. J. Med. Chem. 2016; 59: 7677
  • 7 Okuno K, Arisawa T, Kamon Y, Hashidzume A, Winnik FM. Langmuir 2022; 38: 5156
    • 8a Wang J, Uttamchandani M, Li J, Hu M, Yao SQ. Chem. Commun. 2006; 3783
    • 8b Liu J, Kolar C, Lawson TA, Gmeiner WH. J. Org. Chem. 2001; 66: 5655