Synlett 2024; 35(11): 1279-1284
DOI: 10.1055/a-2214-5512
cluster
Japan/Netherlands Gratama Workshop

Visible-Light-Induced Three-Component Radical Coupling of Selenocarbamates, Enones, and Allylstannanes with Diphenyl (2,4,6-trimethylbenzoyl)phosphine Oxide

Keita Komine
,
Yuta Yamazaki
,
Taiga Iwanaga
,
Hikaru Sakaguchi
,
Hayato Fukuda
,
Jun Ishihara
This work was supported by JSPS KAKENHI grants numbers 22K15254 (K.K.) and 23K04736 (J.I.). This work was the result of using research equipment shared in MEXT project for promoting public utilization of advanced research infrastructure (program for supporting introduction of the new sharing system) Grant Number JPMXS0422500320.


Abstract

A blue LED-induced three-component coupling of a carbamoyl radical, cyclic enone, and allylstannane was developed. The use of blue LEDs and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a radical initiator permitted the three-component radical coupling to proceed with a high chemoselectivity. An elucidation of the mechanism revealed a pathway for the formation of a tributyltin radical from TPO and allylstannane. This tandem radical reaction is expected to be applicable in natural-product synthesis.

Supporting Information



Publikationsverlauf

Eingereicht: 31. Oktober 2023

Angenommen nach Revision: 20. November 2023

Accepted Manuscript online:
20. November 2023

Artikel online veröffentlicht:
21. Dezember 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Godineau E, Landais Y. Chem. Eur. J. 2009; 15: 3044
    • 1b Rowlands GJ. Tetrahedron 2009; 65: 8603
    • 1c Rowlands GJ. Tetrahedron 2010; 66: 1593
    • 1d Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
    • 1e Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692

      For recent reviews, see:
    • 2a Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
    • 2b Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
    • 2c Bhunia A, Studer A. Chem 2021; 7: 2060
    • 2d Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
    • 2e Yue H, Zhu C, Huang L, Dewanji A, Rueping M. Chem. Commun. 2002; 58: 171
    • 2f Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
    • 3a Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
    • 3b Merchant RR, Oberg KM, Lin Y, Novak AJ. E, Felding J, Baran PS. J. Am. Chem. Soc. 2018; 140: 7462
    • 3c Imamura Y, Takaoka K, Komori Y, Nagatomo M, Inoue M. Angew. Chem. Int. Ed. 2023; 62: e202219114

      For representative reviews, see:
    • 4a Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
    • 4b Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
    • 4c Pitre SP, Overman LE. Chem. Rev. 2022; 122: 1717
  • 5 Komine K, Urayama Y, Hosaka T, Yamashita Y, Fukuda H, Hatakeyama S, Ishihara J. Org. Lett. 2020; 22: 5046
    • 6a Grossi L. J. Chem. Soc., Chem. Commun. 1989; 1248
    • 6b Minisci F, Coppa F, Fontana F. J. Chem. Soc., Chem. Commun. 1994; 679
    • 6c Minisci F, Fontana F, Coppa F, Yan YM. J. Org. Chem. 1995; 60: 5430
  • 7 Gill GB, Pattenden G, Reynolds SJ. J. Chem. Soc., Perkin Trans. 1 1994; 369
    • 8a Grainger RS, Innocenti P. Angew. Chem. Int. Ed. 2004; 43: 3445
    • 8b Benati L, Bencivenni G, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Zanardi G. J. Org. Chem. 2006; 71: 3192
    • 8c Scanlan EM, Walton LC. Helv. Chim. Acta 2006; 89: 2133
    • 8d Betou M, Male L, Steed JW, Grainger RS. Chem. Eur. J. 2014; 20: 6505
    • 9a Guo T, Wang H, Wang C, Tang S, Liu J, Wang X. J. Org. Chem. 2022; 87: 6852
    • 9b Oliveira PH. R, Tordato ÉA, Vélez JA. C, Carneiro PS, Paixão MW. J. Org. Chem. 2023; 88: 6407
    • 9c Upreti GC, Singh T, Chaudhary D, Singh A. J. Org. Chem. 2023; 88: 11801
  • 10 Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
    • 11a Jatoi AH, Pawar GG, Robert F, Landais Y. Chem. Commun. 2019; 55: 466
    • 11b Liu Q, Wang L, Liu J, Ruan S, Li P. Org. Biomol. Chem. 2021; 19: 3489
    • 11c Yang H.-B, Jin X.-F, Jiang H.-Y, Luo W. Org. Lett. 2023; 25: 1829
    • 11d Williams JD, Leach SG, Kerr WJ. Chem. Eur. J. 2023; 29: e202300403

      For representative reviews, see:
    • 12a Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
    • 12b Ogbu IM, Kurtay G, Robert F, Landais Y. Chem. Commun. 2022; 58: 7593

      For representative reviews, see:
    • 13a Raviola C, Protti S, Ravelli D, Fagnoni M. Green Chem. 2019; 21: 748
    • 13b Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. Chem. Rev. 2019; 119: 7113
    • 14a Schiesser CH, Skidmore MA. J. Org. Chem. 1998; 63: 5713
    • 14b Morihovitis T, Schiesser CH, Skidmore MA. J. Chem. Soc., Perkin Trans. 2 1999; 2041
    • 14c Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 14d Slutskyy Y, Overman LE. Org. Lett. 2016; 18: 2564
    • 14e Wang J.-X, Ge W, Fu M.-C, Fu Y. Org. Lett. 2022; 24: 1471
    • 15a Yang D, Cheng Z.-Q, Yang L, Hou B, Yang J, Li X.-N, Zi C.-T, Dong F.-W, Liu Z.-H, Zhou J, Ding Z.-T, Hu J.-M. J. Nat. Prod. 2018; 81: 227
    • 15b Wang W.-X, Li Z.-H, Feng T, Li J, Sun H, Huang R, Yuan Q.-X, Ai H.-L, Liu J.-K. Org. Lett. 2018; 20: 7758
    • 15c Jang KH, Kang GW, Jeon J.-e, Lim C, Lee H.-S, Sim CJ, Oh K.-B, Shin J. Org. Lett. 2009; 11: 1713
  • 16 See the Supporting Information for further details.
  • 17 Li H, Liu J, Zhang H, Wang S, Han B, Liu FF. J. Supercrit. Fluids 2001; 21: 227
    • 18a Sumiyoshi T, Schnabel W, Henne A, Lechtken P. Polymer 1985; 26: 141
    • 18b Sumiyoshi T, Katayama M, Schnabel W. Chem. Lett. 1985; 14: 1647
    • 18c Sluggett GW, Turro C, George MW, Koptyug IV, Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
  • 19 Park HK, Shin M, Kim B, Park JW, Lee H. NPG Asia Mater. 2018; 10: 82
    • 20a Du J, Skubi KL, Schultz DM, Yoon TP. Science 2014; 344: 392
    • 20b Pitre SP, Allred TK, Overman LE. Org. Lett. 2021; 23: 1103
    • 20c Hirose A, Watanabe A, Ogino K, Nagatomo M, Inoue M. J. Am. Chem. Soc. 2021; 143: 12387
  • 21 (2S*,3R*)-2-Allyl-3-(morpholine-4-carbonyl)cyclopentanone (anti-4d) and (2R*,3R*)-2-allyl-3-(morpholine-4-carbonyl)cyclopentanone (syn-4d) (Entry 1, Scheme [2]); Typical Procedure A solution of selenocarbamate 1d (1.00 g, 3.70 mmol), enone 2a (0.60 mL, 7.40 mmol), and allyl(tributyl)tin (3a; 2.30 mL, 7.40 mmol) in PhCl (18.5 mL) was degassed, then TPO (129 mg, 0.370 mmol) was added. The mixture was degassed again for 5 min, cooled to 3 °C, and irradiated with 40 W blue LED, at a distance of ~8 cm from the vessel, under a fan at 3 °C for 1 h. Because residual 1d was still present, additional TPO (129 mg, 0.370 mmol) was added, and the mixture was again irradiated as above; this process was performed up to three times until 1d disappeared. The mixture was then concentrated in vacuo, and the residue was purified by column chromatography [silica gel (40 g) + K2CO3 (10 g), acetone–toluene (1:3)] to afford an inseparable mixture of 4d and 5a as a colorless oil; yield: 763.1 mg (anti-4d: 2.18 mmol, 59%; syn-4d: 0.546 mmol, 15%; 5a: 0.742 mmol, 20%). Pure samples of 4d and 5a were obtained by preparative GPC. 4d Colorless oil. FTIR (neat): 3556, 2858, 1739, 1639, 1446, 1234, 1117, 1036, 920, 576 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.80–5.72 (m, 0.2 H), 5.70–5.49 (m, 0.8 H), 5.03–5.00 (m, 2 H), 3.68–3.54 (m, 0.8 × 8 + 0.2 × 7 H), 3.46 (t, J = 6.0 Hz, 0.2 H), 3.03–2.97 (m, 1 H), 2.95–2.91 (m, 1 H), 2.61 (d, J = 5.5 Hz, 0.2 H), 2.57–2.38 (m, 0.8 × 2 + 0.2 H), 2.34–2.11 (m, 3 H), 1.96–1.87 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 217.4, 215.9, 172.0, 171.9, 136.5, 135.4, 117.1, 116.2, 66.89, 66.87, 66.8, 66.6, 52.3, 51.9, 46.2, 46.0, 42.6, 42.5, 41.8, 39.1, 37.4, 34.6, 32.9, 30.2, 25.0, 24.7. MS (ESI): m/z 260 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C13H19NNaO3: 260.1263; found: 260.1273. 5a Colorless oil. FTIR (neat): 3477, 2967, 2913, 2856, 1621, 1430, 1225, 1108, 1035 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.94 (ddt, J = 17.5, 10.0, 6.5 Hz, 1 H), 5.19 (d, J = 10.0 Hz, 1 H), 5.15 (d, J = 17.5 Hz, 1 H), 3.66 (br s, 4 H), 3.63 (br d, J = 4.0 Hz, 2 H), 3.46 (br s, 2 H), 3.15 (d, J = 6.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 169.5, 131.2, 118.0, 66.8, 66.6, 46.2, 41.9, 38.5. MS (DART): m/z 156 [M + H]+. HRMS (DART): m/z [M + H]+ calcd for C8H14NO2: 156.1025; found: 156.1029
  • 22 Telluride compounds are known to generate radical species more readily than selenide compounds. We attempted to prepare the telluride 1d-Te (Figure 1), but it was too labile, and we could not obtain it.
  • 23 The Sn–Se bond-dissociation energy is 95.8 kcal/mol; see: Luo YR. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007